• The Agrodiversity Experiment: three years of data from a multisite study in intensively managed grasslands

      Kirwan, Laura; Connolly, John; Brophy, Caroline; Baadshaug, Ole; Belanger, Gilles; Black, Alistair D; Camus, Tim; Collins, Rosemary; Cop, Jure; Delgado, Ignacio; De Vliegher, Alex; Elgersma, Anjo; Frankow-Lindberg, Bodil; Golinski, Piotr; Grieu, Philippe; Gustavsson, Anne-Maj; Helgadottir, Aslaug; Hoglind, Mats; Huguenin-Elie, Olivier; Jorgensen, Marit; Kadziuliene, Zydre; Lunnan, Tor; Luscher, Andreas; Kurki, Paivi; Porqueddu, Claudio; Sebastia, M.-Teresa; Thumm, Ulrich; Walmsley, David; Finn, John A. (Ecological Society of America, 2014-06-11)
      Intensively managed grasslands are globally prominent ecosystems. We investigated whether experimental increases in plant diversity in intensively managed grassland communities can increase their resource use efficiency. This work consisted of a coordinated, continental-scale 33-site experiment. The core design was 30 plots, representing 15 grassland communities at two seeding densities. The 15 communities were comprised of four monocultures (two grasses and two legumes) and 11 four-species mixtures that varied in the relative abundance of the four species at sowing. There were 1028 plots in the core experiment, with another 572 plots sown for additional treatments. Sites agreed a protocol and employed the same experimental methods with certain plot management factors, such as seeding rates and number of cuts, determined by local practice. The four species used at a site depended on geographical location, but the species were chosen according to four functional traits: a fast-establishing grass, a slow-establishing persistent grass, a fast-establishing legume, and a slow-establishing persistent legume. As the objective was to maximize yield for intensive grassland production, the species chosen were all high-yielding agronomic species. The data set contains species-specific biomass measurements (yield per species and of weeds) for all harvests for up to four years at 33 sites. Samples of harvested vegetation were also analyzed for forage quality at 26 sites. Analyses showed that the yield of the mixtures exceeded that of the average monoculture in >97% of comparisons. Mixture biomass also exceeded that of the best monoculture (transgressive overyielding) at about 60% of sites. There was also a positive relationship between the diversity of the communities and aboveground biomass that was consistent across sites and persisted for three years. Weed invasion in mixtures was very much less than that in monocultures. These data should be of interest to ecologists studying relationships between diversity and ecosystem function and to agronomists interested in sustainable intensification. The large spatial scale of the sites provides opportunity for analyses across spatial (and temporal) scales. The database can also complement existing databases and meta-analyses on biodiversity–ecosystem function relationships in natural communities by focusing on those same relationships within intensively managed agricultural grasslands.
    • Ecosystem function enhanced by combining four functional types of plant species in intensively-managed grassland mixtures: a three-year continental-scale field experiment

      Finn, John A.; Kirwan, Laura; Connolly, John; Sebastià, Maria Teresa; Helgadottir, Aslaug; Baadshaug, Ole Hans; Bélanger, Gilles; Black, Alistair D; Brophy, Caroline; Collins, Rosemary P.; Čop, Jure; Dalmannsdóttir, Sigridur; Delgado, Ignacio; Elgersma, Anjo; Fothergill, Michael; Frankow-Lindberg, Bodil E.; Ghesquiere, An; Golinska, Barbara; Golinski, Piotr; Grieu, Philippe; Gustavsson, Anne-Maj; Höglind, Mats; Huguenin-Elie, Olivier; Jørgensen, Marit; Kadziuliene, Zydre; Kurki, Paivi; Llurba, Rosa; Lunnan, Tor; Porqueddu, Claudio; Suter, Matthias; Thumm, Ulrich; Lüscher, Andreas (Wiley-Blackwell, 2013-02-22)
      1. A co-ordinated continental-scale field experiment across 31 sites was used to compare the biomass yield of monocultures and four-species mixtures associated with intensively managed agricultural grassland systems. To increase complementarity in resource use, each of the four species in the experimental design represented a distinct functional type derived from two levels of each of two functional traits, nitrogen acquisition (N2-fixing legume or non-fixing grass) crossed with temporal development (fast-establishing or temporally persistent). Relative abundances of the four functional types in mixtures were systematically varied at sowing to vary the evenness of the same four species in mixture communities at each site, and sown at two levels of seed density. 2. Across multiple years, the total yield (including weed biomass) of the mixtures exceeded that of the average monoculture in >97% of comparisons. It also exceeded that of the best monoculture (transgressive overyielding) in about 60% of sites, with a mean yield ratio of mixture to best-performing monoculture of 1.07 across all sites. Analyses based on yield of sown species only (excluding weed biomass) demonstrated considerably greater transgressive overyielding (significant at about 70% of sites, ratio of mixture to best-performing monoculture = 1.18). 3. Mixtures maintained a resistance to weed invasion over at least three years. In mixtures, median values indicate <4% of weed biomass in total yield, whereas the median percentage of weeds in monocultures increased from 15% in year 1 to 32% in year 3. 4. Within each year, there was a highly significant relationship (P<0.0001) between sward evenness and the diversity effect (excess of mixture performance over that predicted from the monoculture performances of component species). At lower evenness values, increases in community evenness resulted in an increased diversity effect, but the diversity effect was not significantly different from the maximum diversity effect across a wide range of higher evenness values. The latter indicates the robustness of the diversity effect to changes in species’ relative abundances. 5. Across sites with three complete years of data (24 of the 31 sites), the effect of interactions between the fast-establishing and temporal persistent trait levels of temporal development was highly significant and comparable in magnitude to effects of interactions between N2-fixing and non-fixing trait levels of nitrogen acquisition. 6. Synthesis and applications. The design of grassland mixtures is relevant to farm-level strategies to achieve sustainable intensification. Experimental evidence indicated significant yield benefits of four-species agronomic mixtures which yielded more than the highest-yielding monoculture at most sites. The results are relevant for agricultural practice, and show how grassland mixtures can be designed to improve resource complementarity, increase yields and reduce weed invasion. The yield benefits were robust to considerable changes in the relative proportions of the four species, which is extremely useful for practical management of grassland swards.