• Effect of short term diet restriction on gene expression in the bovine hypothalamus using next generation RNA sequencing technology

      Matthews, Daragh; Diskin, Michael G; Kenny, David A; Creevey, Christopher J; Keogh, Kate; Waters, Sinead M (Biomed Central, 2017-11-09)
      Background Negative energy balance (NEB) is an imbalance between energy intake and energy requirements for lactation and body maintenance affecting high-yielding dairy cows and is of considerable economic importance due to its negative impact on fertility and health in dairy herds. It is anticipated that the cow hypothalamus experiences extensive biochemical changes during the early post partum period in an effort to re-establish metabolic homeostasis. However, there is variation in the tolerance to NEB between individual cows. In order to understand the genomic regulation of ovulation in hypothalamic tissue during NEB, mRNA transcriptional patterns between tolerant and sensitive animals were examined. A short term dietary restriction heifer model was developed which induced abrupt onset of anoestrus in some animals (Restricted Anovulatory; RA) while others maintained oestrous cyclicity (Restricted Ovulatory; RO). A third control group (C) received a higher level of normal feeding. Results A total of 15,295 genes were expressed in hypothalamic tissue. Between RA and C groups 137 genes were differentially expressed, whereas between RO and C, 32 genes were differentially expressed. Differentially expressed genes were involved in the immune response and cellular motility in RA and RO groups, respectively, compared to C group. The largest difference between groups was observed in the comparison between RA and RO heifers, with 1094 genes shown to be significantly differentially expressed (SDE). Pathway analysis showed that these SDE genes were associated with 6 canonical pathways (P < 0.01), of which neuroactive ligand-receptor interaction was the most significant. Within the comparisons the main over-represented pathway functions were immune response including neuroprotection (CXCL10, Q1KLR3, IFIH1, IL1 and IL8; RA v C and RA v RO); energy homeostasis (AgRP and NPY; RA v RO); cell motility (CADH1, DSP and TSP4; RO v C) and prevention of GnRH release (NTSR1 IL1α, IL1β, NPY and PACA; RA v RO). Conclusions This information will assist in understanding the genomic factors regulating the influence of diet restriction on fertility and may assist in optimising nutritional and management systems for the improvement in reproductive performance.
    • Effect of supplementation with different fat sources on the mechanisms involved in reproductive performance in lactating dairy cattle

      Hutchinson, Ian A.; Hennessy, A. A.; Waters, Sinead M.; Dewhurst, Richard J.; Evans, A.C.O.; Lonergan, P.; Butler, Stephen T. (Elsevier Inc., 2012-07-01)
      Supplementary fat positively influences reproductive performance in dairy cattle, although the mechanisms involved are not clearly defined. Our objective was to determine the effects of four different fat supplements on follicle development, plasma steroid hormone concentrations and prostaglandin (PG) synthesis in lactating dairy cattle. Forty-eight early lactation Holstein-Friesian cows (21 primiparous, 27 multiparous) were used in a completely randomized block design. Cows were fed the same basal TMR diet and received one of four fat supplements: (i) palmitic acid (18:0 fatty acid; Control), (ii) flaxseed (rich in 18:3 n-3 fatty acid; Flax), (iii) conjugated linoleic acid (a mixture of cis-9, trans-11 and trans-10, cis-12 isomers; CLA), and (iv) fish oil (rich in 20:5 and 22:6 n-3 fatty acids; FO). All lipid supplements were formulated to be isolipidic; palmitic acid was added as necessary to provide a total lipid supplement intake of 500 g/day. Cows were synchronized to be in estrus on Day 15 of dietary treatment. All antral follicles were counted, and dominant follicles, subordinate follicles and corpora lutea were measured daily via transrectal ovarian ultrasonography for one complete estrous cycle. Blood samples were collected daily, and selected samples were analyzed for progesterone, estradiol, insulin-like growth factor-1, insulin, cholesterol and non-esterified fatty acids. Estrus was synchronized a second time, and liver and endometrial biopsies were collected on Day 7 of the estrous cycle. Gene expression was evaluated for a number of genes involved in prostaglandin synthesis (endometrium) and fatty acid uptake and utilization (liver). Fat supplementation had little effect on follicle development. Cows receiving supplementary n-3 fatty acids had lesser plasma progesterone (P4) and smaller corpora lutea than cows receiving the CLA or Control supplements. Effects of fat supplementation on the endometrial expression of genes involved in PG synthesis were minor. Hepatic expression of SREBF1, ASCL1 and FABP1 was reduced by FO supplementation. Reduced plasma P4 in n-3 supplemented cows may lead to a suboptimal uterine environment for embryo development and hence reduced fertility compared to cows receiving the control or CLA supplements.
    • Effects of lipid-encapsulated conjugated linoleic acid supplementation on milk production, bioenergetic status and indicators of reproductive performance in lactating dairy cows

      Hutchinson, Ian A.; de Veth, Michael J.; Stanton, Catherine; Dewhurst, Richard J.; Lonergan, P.; Evans, A.C.O.; Butler, Stephen T. (Cambridge University Press: Published for the Institute of Food Research and the Hannah Research Institute, 2011-07)
      Conjugated linoleic acid (CLA) reduces mammary milk fat synthesis in a dose-dependent manner. Our objective was to determine the effects of lipid-encapsulated CLA (LE-CLA) supplementation on milk production, reproductive performance and metabolic responses in lactating dairy cows fed a grass silage-based diet. Seventy-two Holstein-Friesian cows (32 primiparous and 40 multiparous) were used in a completely randomized block design. Cows received either 80 g of LE-CLA daily or 60 g of calcium salts of palm fatty acids daily (control) from parturition until 60 days in milk. LE-CLA contained a 50:50 mix of cis-9,trans-11 CLA and trans-10,cis-12 CLA, resulting in a daily intake of 6 g of each isomer. Milk production and dry matter intake were recorded daily, and blood samples were collected 3-times a week. Blood samples were analysed for circulating concentrations of glucose, non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), insulin and insulin-like growth factor-I (IGF-I). Progesterone was measured in blood samples collected after the first post-partum insemination. Ovarian ultrasound examinations commenced at 8–10 d post partum and were carried out 3-times a week until first ovulation. LE-CLA treatment resulted in decreased milk fat concentration, with consequent improvements in energy balance and body condition score (BCS). The peak concentration of NEFA in blood was reduced by LE-CLA, but circulating concentrations of insulin, glucose, IGF-I, BHBA and progesterone were not affected. There was no effect of LE-CLA supplementation on the post-partum interval to first ovulation. Services per conception tended to be reduced. The reduction in milk energy output and improvement in energy status and BCS in LE-CLA-supplemented cows provides a strong rationale for further studies with greater cow numbers to test effects on reproductive performance.
    • Factors affecting body condition score, live weight and reproductive performance in spring-calving suckler cows

      Drennan, Michael J; Berry, Donagh P. (Teagasc, Oak Park, Carlow, Ireland, 2006)
      The objective was to identify factors affecting live weight (LW), body condition score (BCS), calving rate and calving interval in spring-calving suckler cows. A total of 925 records on 299 cows from the years 1987 to 1999 were used and the data were analyzed using mixed models and generalised estimating equations. Cows calving early in the year (< day 65 of the year) were significantly heavier at the start of winter, had greater BCS at the subsequent calving but lost most LW in winter. Despite having higher LW gain at pasture, annual LW gain of early-calving cows was lower than that of late-calving cows (> day 90 of the year). Trends in BCS were similar to LW but there was no effect of calving date on annual BCS change. Cows in parity 1, 2, 3 to 7 and >7 had initial LW of 523, 549, 614 and 623 kg, winter LW losses of 61, 52, 65 and 67 kg and LW gains at pasture of 81, 99, 94 and 75 kg, respectively. First parity animals had higher BCS at the start of winter but had greater BCS loss in winter and lower BCS gain at pasture than the other three parity groups. Overall pregnancy rate was 93.6% and was not affected by either previous calving date or cow parity. Mean calving interval was 367 days and was affected by previous calving date but there was no effect of either cow parity or previous calving difficulty. Mean calving interval for cows calving early, mid-season or late were 378, 364 and 353 days, respectively. The results show that good reproduction performance can be achieved in spring-calving suckler cows subjected to low feeding levels during the winter period but grazed on well-managed pasture in summer.
    • Genetics of reproductive performance in seasonal calving beef cows and its association with performance traits

      Berry, Donagh P.; Evans, R.D. (American Society of Animal Science, 2014-11-24)
      Due primarily to a lack of phenotypic data, little research has been undertaken on the genetics of reproductive performance in beef cattle. The objective of this study was to quantify, using data from the Irish national cattle herd, the contribution of additive genetics to phenotypic differences in reproductive performance in beef cattle and to investigate whether routinely available early predictors of genetic merit for reproductive performance exist. Up to 218,718 parity records from 156,506 animals were used to estimate variance components for a range of reproductive traits using repeatability animal linear mixed models. Covariances with performance traits were estimated using bivariate sire linear mixed models. The reproductive traits were age at first calving, calving in the first 42 d of the calving seasons (defined separately in heifers and cows), calving interval between consecutive calving events, and survival to the next lactation. Performance traits included calving dystocia, linear type traits describing the skeletal, muscular, and functional characteristics of an animal, live weight and price, carcass traits, and producer subjectively scored traits of weanling quality and docility. Heritability for age at first calving was 0.31 while the heritability of the remaining reproductive traits ranged from 0.01 to 0.06; repeatability estimates varied from 0.02 to 0.06. Increased muscularity, measured either by trained assessors or producers on live animals, or by mechanical grading machines on slaughtered animals (i.e., carcass conformation), was genetically correlated with reduced reproductive performance for some of the reproductive variables assessed. This is one of the largest studies undertaken on the genetics of reproduction in beef herds and clearly shows that genetic selection for improved reproductive performance in beef herds is feasible. However, breeding goals that select for muscularity and live weight or growth rate should be cognizant of indirect response to selection that may cause any deterioration in reproductive performance.