T-Stor
 

T-Stor >
Other Teagasc Research >
Teagasc publications in Biomed Central >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11019/299

Title: C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess
Authors: Griffiths, Bryan S
Spilles, Annette
Bonkowski, Michael
Keywords: Soil nutrients
Nitrogen
Issue Date: 21-Jun-2012
Publisher: Biomed Central
Citation: Ecological Processes. 2012 Jun 21;1(1):6
Series/Report no.: Ecological Processes
Abstract: Introduction: The availability of essential nutrients, such as nitrogen (N) and phosphorus (P), can feedback on soil carbon (C) and the soil microbial biomass. Natural cycles can be supplemented by agricultural fertiliser addition, and we determined whether the stoichiometry and nutrient limitation of the microbial biomass could be affected by an unbalanced nutrient supply. Methods: Samples were taken from a long-term trial (in effect since 1968) with annual applications of 0, 15 and 30 kg P ha−1 with constant N and potassium. Soil and microbial biomass CNP contents were measured and nutrient limitation assessed by substrate-induced respiration. Linear regression and discriminant analyses were used to identify the variables explaining nutrient limitation. Results: Soil and biomass CNP increased with increasing P fertiliser, and there was a significant, positive, correlation between microbial biomass P and biomass C, apart from at the highest level of P fertilisation when the microbial biomass was over-saturated with P. The molar ratios of C:N:P in the microbial biomass remained constant (homeostatic) despite large changes in the soil nutrient ratios. Microbial growth was generally limited by C and N, except in soil with no added P when C and P were the main limiting nutrients. C, N and P, however, did not explain all the growth limitation on the soils with no added P. Conclusions: Increased soil C and N were probably due to increased net primary production. Our results confirm that C:N:P ratios within the microbial biomass were constrained (i.e. homeostatic) under near optimum soil conditions. Soils with no added P were characterised by strong microbial P limitation and soils under high P by over-saturation of microorganisms with P. Relative changes in biomass C:P can be indicative of nutrient limitation within a site.
Description: peer-reviewed
URI: http://hdl.handle.net/11019/299
http://dx.doi.org/10.1186/2192-1709-1-6
Appears in Collections:Teagasc publications in Biomed Central

Files in This Item:

File Description SizeFormat
2192-1709-1-6.pdf969.9 kBAdobe PDFView/Open

This item is protected by original copyright


View Statistics

Items in T-Stor are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! Teagasc - The Agriculture and Food Development Authority  2012  - Feedback