T-Stor
 

T-Stor >
Other Teagasc Research >
Teagasc publications in Biomed Central >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11019/338

Title: Consistent mutational paths predict eukaryotic thermostability
Authors: van Noort, Vera
Bradatsch, Bettina
Arumugam, Manimozhiyan
Amlacher, Stefan
Bange, Gert
Creevey, Christopher J.
Falk, Sebastian
Mende, Daniel R
Sinning, Irmgard
Hurt, Ed
Bork, Peer
Keywords: Thermophily
Comparative genomics
Protein engineering
Eukaryotes
Fungi
Issue Date: 10-Jan-2013
Publisher: Biomed Central
Citation: Vera van Noort, Bettina Bradatsch, Manimozhiyan Arumugam, Stefan Amlacher, Gert Bange, Chris Creevey, Sebastian Falk, Daniel R Mende, Irmgard Sinning, Ed Hurt and Peer Bork. Consistent mutational paths predict eukaryotic thermostability. BMC Evolutionary Biology 2013, 13:7 doi:10.1186/1471-2148-13-7
Series/Report no.: BMC Evolutionary Biology
Abstract: Background: Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results: Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1), we could also characterise the molecular consequences of some of these mutations. Conclusions: The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.
Description: peer-reviewed
URI: http://hdl.handle.net/11019/338
http://dx.doi.org/10.1186/1471-2148-13-7
http://www.biomedcentral.com/1471-2148/13/7
ISSN: 1471-2148
Appears in Collections:Animal & Bioscience
Teagasc publications in Biomed Central

Files in This Item:

File Description SizeFormat
1471-2148-13-7.pdf1.69 MBAdobe PDFView/Open
1471-2148-13-7-S1.DOCX314.7 kBMicrosoft Word XMLView/Open

This item is protected by original copyright


View Statistics

Items in T-Stor are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! Teagasc - The Agriculture and Food Development Authority  2012  - Feedback