T-Stor
 

T-Stor >
Crops, Environment & Land Use Programme >
Environment, Soils & Land Use >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11019/412

Title: Groundwater: A pathway for terrestrial C and N losses and indirect greenhouse gas emissions
Authors: Jahangir, Mohammad M. R.
Johnson, P.
Khalil, M.I.
Hennessy, D.
Humphreys, James
Fenton, Owen
Richards, Karl G.
Keywords: Greenhouse gases
Indirect N2O emissions
Effective rainfall
Dissolved C
Dissolved N
Groundwater
Issue Date: 16-Jul-2012
Publisher: Elsevier
Citation: Jahangir, M. M. R.; Johnston, P.; Khalil, M. I.; Hennessy, D.; Humphreys, J.; Fenton, O.; Richards, K. G. Groundwater: A pathway for terrestrial C and N losses and indirect greenhouse gas emissions. Agriculture, Ecosystems & Environment, Volume 159, 15 September 2012, Pages 40-48. DOI: 10.1016/j.agee.2012.06.015
Series/Report no.: Agriculture, Ecosystems & Environment;vol 159
Abstract: Estimating losses of dissolved carbon (C) and nitrogen (N) via groundwater in an agricultural system provides insights into reducing uncertainties in the terrestrial C and N balances. In addition, quantification of dissolved nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) in groundwaters beneath agricultural systems is important for global greenhouse gas (GHG) budgets. Dissolved C (DC: dissolved organic carbon (DOC) + CO2-C + CH4-C) and dissolved nitrogen (DN: NO3−-N + NH4+ + NO2−-N + N2O-N + N2) in groundwater were measured in two low permeability (<0.02 m d−1) and two high permeability (>0.05 m d−1) aquifers in Ireland. Groundwater in multilevel piezometers was sampled monthly over two years. Mean groundwater discharge to surface water was higher in 2009 (587–836 mm) than in 2010 (326–385 mm). Dissolved C and N delivery to surface water via groundwater caused substantial losses of terrestrial C and N. The extent of delivery was site specific and depended on N input, recharge and aquifer permeability. Mean dissolved N losses ranged from 8–12% of N input in low permeability to 27–38% in high permeability aquifers. The dominant fraction of DN was NO3−-N (84–90% of DN) in high permeability aquifers and N2 (46–77% of DN) in low permeability aquifers. Indirect N2O emissions via groundwater denitrification accounted for 0.03–0.12% of N input, which was equivalent to 3–11% of total N2O emissions. Dissolved C loss to surface waters via groundwater was not significant compared to total carbon (TC) content of the topsoil (0.06–0.18% of TC). Site characteristics contributed greatly to the distribution of N between NO3−-N and dissolved N gases, N2O and N2. Indirect GHG emissions from groundwater were an important part of farm nutrient budgets, which clearly has implications for national GHG inventories.
Description: peer-reviewed
URI: http://hdl.handle.net/11019/412
http://dx.doi.org/10.1016/j.agee.2012.06.015
http://www.sciencedirect.com/science/article/pii/S0167880912002411
ISSN: 0167-8809
Appears in Collections:Environment, Soils & Land Use
Livestock Systems

Files in This Item:

File Description SizeFormat
Jahangir et al postprint _AGEE_GHG.pdf267.07 kBAdobe PDFView/Open

This item is protected by original copyright


View Statistics

Items in T-Stor are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! Teagasc - The Agriculture and Food Development Authority  2012  - Feedback