T-Stor
 

T-Stor >
Animal & Grassland Research & Innovation Programme >
Pig Development >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11019/720

Title: Effect of Lactobacillus salivarius Bacteriocin Abp118 on the Mouse and Pig Intestinal Microbiota
Authors: Riboulet-Bisson, Eliette
Sturme, Mark H. J.
Jeffery, Ian B.
O'Donnell, Michelle M.
Neville, B. Anne
Forde, Brian M.
Claesson, Marcus J.
Harris, Hugh
Gardiner, Gillian E.
Casey, Patrick G.
Lawlor, Peadar G
O'Toole, Paul W.
Ross, R Paul
Keywords: Lactobacillus salivarius
Bacterial pathogens
Intestinal microbiota
Probiotic
Mouse
Pig
Issue Date: 17-Feb-2012
Publisher: PLOS
Citation: Riboulet-Bisson E, Sturme MHJ, Jeffery IB, O'Donnell MM, Neville BA, et al. (2012) Effect of Lactobacillus salivarius Bacteriocin Abp118 on the Mouse and Pig Intestinal Microbiota. PLoS ONE 7(2): e31113. doi:10.1371/journal.pone.0031113
Series/Report no.: PLOS ONE;vol 7
Abstract: Lactobacilli are Gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT) L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on Gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially bacteriocin-dependent
Description: peer-reviewed
This work was supported by a Principal Investigator award (07/IN.1/B1780) from Science Foundation Ireland to Dr. O'Toole. Dr. Neville was the recipient of an Embark studentship from the Irish Research Council for Science Engineering and Technology.
URI: http://hdl.handle.net/11019/720
http://dx.doi.org/10.1371/journal.pone.0031113
Appears in Collections:Pig Development
Food Biosciences

Files in This Item:

File Description SizeFormat
PLoSOne e31113.pdf906.48 kBAdobe PDFView/Open

This item is protected by original copyright


View Statistics

Items in T-Stor are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! Teagasc - The Agriculture and Food Development Authority  2012  - Feedback