Céad Mile Fáilte go T-Stór (Welcome to T- Stór)

T-Stór is Teagasc’s Open Access Repository, maintained by the Teagasc Library Service. Stór is the Gaelic word for Repository or Store or Warehouse, and T-Stór is an online “store” of Teagasc Research outputs and related documents. T-Stór collects preserves and makes freely available scholarly communication, including peer-reviewed articles, working papers and conference papers created by Teagasc researchers. Where material has already been published it is made available subject to the open-access policies of the original publishers. About Teagasc

Select a community to browse its collections.

Animal & Grassland Research & Innovation Programme [398]
Crops, Environment & Land Use Programme [226]
Food Programme [328]
Irish Journal of Agricultural & Food Research [214]
Other Teagasc Research [175]
Rural Economy & Development Programme [131]
  • Marine Functional Foods Research Initiative (NutraMara)

    Troy, Declan; Tiwari, Brijesh; Hayes, Maria; Ross, R. Paul; Stanton, Catherine; Johnson, Mark; Stengel, Dagmar; O'Doherty, John V.; Fitzgerald, Richard J.; McSorley, Emeir; Kerry, Joseph; Marine Institute; MFFRI/07/01 (Marine Institute, 2017-12)
    The NutraMara – Marine Functional Foods Research Initiative was conceived by Sea Change - A Marine Knowledge, Research and Innovation Strategy for Ireland 2007-2013. The goal was to develop a collaborative funding mechanism that would create new research capacity and build the capabilities required to maximise the potential of Ireland’s extensive marine bioresources. By supporting a strong interdisciplinary research team, capable of exploring marine animals and plants as a sustainable source of materials for use as functional ingredients and foods, the vision for NutraMara was to position Ireland to the fore in use of marine bioresources as health beneficial ingredients. Commencing in 2008 and supported by funds of €5.2 million from the Marine Institute and the Department of Agriculture, Food and the Marine, the research programme was led by Teagasc as the head of a multi-institutional consortium. The NutraMara consortium comprises marine bioresources and bioscience expertise, with food science and technology expertise from University College Cork; University College Dublin; the National University of Ireland Galway; the University of Limerick and Ulster University. Research effort was directed towards exploring Ireland’s marine bioresources – including macro- and microalgae, finfish and shellfish from wild and cultured sources: and discards from processing fish as sources of novel ingredients with bioactive characteristics. This discovery activity involved the collection of over 600 samples from 39 species of algae and fish and the analysis of 5,800 extracts, which resulted in 3,000 positive “hits” for bioactivity. The NutraMara consortium has built a strong research capacity to identify, characterise and evaluate marine-origin bioactives for use as/in functional foods. It further built the capacity to develop model foods enhanced with these marine-origin functional ingredients; providing insights to the processing challenges associated with producing functional ingredients from marine organisms. The consortium was actively engaged in research activities designed to identify and assess bioactive compounds from available marine resources, including polyphenols, proteins/peptides, amino acids, polysaccharides, polyunsaturated fatty acids and materials with antioxidant, probiotic or prebiotic properties. A key component of NutraMara’s activities was the development of human capital. The recruitment of M.Sc. and PhD students and their integration within a dynamic research environment that has strong links to industry, provided lasting expertise and capabilities, which are relevant to the needs of Ireland’s food and marine sectors. NutraMara research led to the awarding of eighteen PhDs and recruitment of 21 post-doctoral researchers over the eight year research programme. In excess of 80 peer reviewed publications resulted from this research and more publications are planned. A further 100 posters and conference presentations were also delivered by NutraMara researchers and Principal Investigators. The development and implementation of training and exchange programmes aimed at providing early stage researchers with inter-disciplinary skills that are critical to their development as researchers, enhanced the research capacity of institutions, the industry sectors and the country as a whole. Principal Investigators involved in leading the NutraMara research programme have secured additional research grants of almost €6 million from national and international sources and are engaged in extensive research collaboration involving marine and food research expertise; an activity which did not exist prior to NutraMara. The dissemination of knowledge and transfer of research results to industry were key activities in the research programme. The research outputs and visibility of NutraMara activity nationally resulted in 10 companies engaging in research and development activity with the consortium. Regular workshops and conferences organised by NutraMara attracted close to five hundred participants from Ireland and overseas. Members of the NutraMara core PI group have contributed to the formulation of new national foods and marine research policy and national research agenda, both during the national prioritisation exercise and in sectoral research strategies. This final project report describes the process by which research targets were identified, and the results of extensive screening and evaluation of compounds extracted from marine bioresources. It also highlights the development of new protocols designed to extract compounds in ways that are food friendly. Evaluating the functional properties, bioactivity and bioavailability of high potential marine compounds involved in vitro and in vivo testing. Pilot animal and human intervention studies yielded further insight to the potential and challenges in developing marine functional ingredients. As a result of work completed within the NutraMara consortium, Ireland is well positioned to continue to contribute to the development of ingredients derived from marine organisms and in doing so support the on-going development of Ireland’s food sector.
  • Microbiota-related Changes in Bile Acid & Tryptophan Metabolism are Associated with Gastrointestinal Dysfunction in a Mouse Model of Autism

    Golubeva, Anna B.; Joyce, Susan A.; Moloney, Gerard; Burokas, Aurelijus; Sherwin, Eoin; Arboyelaya, Silvia; Flynn, Ian; Khochanskiy, Dmitry; Pérez, Angela M.; Peterson, Veronica; REa, Kieran; MUrphy, Kiera; Makarova, Olga; Buravkov, Sergey; Hyland, Niall P.; Stanton, Catherine; Clarke, Gerard; Gahan, Cormac G>M>; Dinan, Timothy G.; Cryan, John F.; Science Foundation Ireland; SFI/12/RC/2273 (2017-09-15)
    Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental conditions worldwide. There is growing awareness that ASD is highly comorbid with gastrointestinal distress and altered intestinal microbiome, and that host-microbiome interactions may contribute to the disease symptoms. However, the paucity of knowledge on gut-brain axis signaling in autism constitutes an obstacle to the development of precision microbiota-based therapeutics in ASD. To this end, we explored the interactions between intestinal microbiota, gut physiology and social behavior in a BTBR T+ Itpr3tf/J mouse model of ASD. Here we show that a reduction in the relative abundance of very particular bacterial taxa in the BTBR gut – namely, bile-metabolizing Bifidobacterium and Blautia species, - is associated with deficient bile acid and tryptophan metabolism in the intestine, marked gastrointestinal dysfunction, as well as impaired social interactions in BTBR mice. Together these data support the concept of targeted manipulation of the gut microbiota for reversing gastrointestinal and behavioral symptomatology in ASD, and offer specific plausible targets in this endeavor.
  • A comparison of 4 predictive models of calving assistance and difficulty in dairy heifers and cows

    Fenlon, Caroline; O'Grady, Luke; Mee, John F; Butler, Stephen T.; Doherty, Michael L.; Dunnion, John; Dairy Research Ireland (Elsevier, 21/09/2017)
    The aim of this study was to build and compare predictive models of calving difficulty in dairy heifers and cows for the purpose of decision support and simulation modeling. Models to predict 3 levels of calving difficulty (unassisted, slight assistance, and considerable or veterinary assistance) were created using 4 machine learning techniques: multinomial regression, decision trees, random forests, and neural networks. The data used were sourced from 2,076 calving records in 10 Irish dairy herds. In total, 19.9 and 5.9% of calving events required slight assistance and considerable or veterinary assistance, respectively. Variables related to parity, genetics, BCS, breed, previous calving, and reproductive events and the calf were included in the analysis. Based on a stepwise regression modeling process, the variables included in the models were the dam's direct and maternal calving difficulty predicted transmitting abilities (PTA), BCS at calving, parity; calving assistance or difficulty at the previous calving; proportion of Holstein breed; sire breed; sire direct calving difficulty PTA; twinning; and 2-way interactions between calving BCS and previous calving difficulty and the direct calving difficulty PTA of dam and sire. The models were built using bootstrapping procedures on 70% of the data set. The held-back 30% of the data was used to evaluate the predictive performance of the models in terms of discrimination and calibration. The decision tree and random forest models omitted the effect of twinning and included only subsets of sire breeds. Only multinomial regression and neural networks explicitly included the modeled interactions. Calving BCS, calving difficulty PTA, and previous calving assistance ranked as highly important variables for all 4 models. The area under the receiver operating characteristic curve (ranging from 0.64 to 0.79) indicates that all of the models had good overall discriminatory power. The neural network and multinomial regression models performed best, correctly classifying 75% of calving cases and showing superior calibration, with an average error in predicted probability of 3.7 and 4.5%, respectively. The neural network and multinomial regression models developed are both suitable for use in decision-support and simulation modeling.
  • Ensifer-mediated Arabidopsis thaliana Root Transformation (E-ART): A Protocol to Analyse the Factors that Support Ensifer-mediated Transformation (EMT) of Plant Cells

    Rathore, Deeraj Singh; Doohan, Fiona M.; Mullins, Ewen; Teagasc Walsh Fellowship Programme (Bio-protocol LLC, 2017-10-05)
    Ensifer adhaerens OV14, a soil borne alpha-proteobacteria of the Rhizobiaceae family, fortifies the novel plant transformation technology platform termed ‘Ensifer-mediated transformation’ (EMT). EMT can stably transform both monocot and dicot species, and the host range of EMT is continuously expanding across a diverse range of crop species. In this protocol, we adapted a previously published account that describes the use of Arabidopsis thaliana roots to investigate the interaction of A. thaliana and Agrobacterium tumefaciens. In our laboratory, we routinely use A. thaliana root explants to examine the factors that enhance the utility of EMT. In addition, the E-ART protocol can be used to study the transcriptional response of E. adhaerens and host plant following exposure to explant tissue, the transformability of different Ensifer adhaerens strains/mutants as well as testing the susceptibility of A. thaliana mutant lines as a means to decipher the mechanisms underpinning EMT.
  • Bile acids at the cross-roads of gut microbiome–host cardiometabolic interactions

    Ryan, Paul M; Stanton, Catherine; Caplice, Noel M; Science Foundation Ireland; Enterprise Ireland Commercialization Fund; SFI/12/RC/2273; CF/2013/3030A/B (Biomed Central, 2017-12-28)
    While basic and clinical research over the last several decades has recognized a number of modifiable risk factors associated with cardiometabolic disease progression, additional and alternative biological perspectives may offer novel targets for prevention and treatment of this disease set. There is mounting preclinical and emerging clinical evidence indicating that the mass of metabolically diverse microorganisms which inhabit the human gastrointestinal tract may be implicated in initiation and modulation of cardiovascular and metabolic disease outcomes. The following review will discuss this gut microbiome–host metabolism axis and address newly proposed bile-mediated signaling pathways through which dysregulation of this homeostatic axis may influence host cardiovascular risk. With a central focus on the major nuclear and membrane-bound bile acid receptor ligands, we aim to review the putative impact of microbial bile acid modification on several major phenotypes of metabolic syndrome, from obesity to heart failure. Finally, attempting to synthesize several separate but complementary hypotheses, we will review current directions in preclinical and clinical investigation in this evolving field.

View more