Céad Mile Fáilte go T-Stór (Welcome to T- Stór)

T-Stór is Teagasc’s Open Access Repository, maintained by the Teagasc Library Service. Stór is the Gaelic word for Repository or Store or Warehouse, and T-Stór is an online “store” of Teagasc Research outputs and related documents. T-Stór collects preserves and makes freely available scholarly communication, including peer-reviewed articles, working papers and conference papers created by Teagasc researchers. Where material has already been published it is made available subject to the open-access policies of the original publishers. About Teagasc

Select a community to browse its collections.

Animal & Grassland Research & Innovation Programme [719]
Crops, Environment & Land Use Programme [369]
Food Programme [705]
Rural Economy & Development Programme [191]
Irish Journal of Agricultural & Food Research [247]
Other Teagasc Research [230]
  • The effect of bovine feeding system (pasture or concentrate) on the oxidative and sensory shelf life of whole milk powder

    Clarke, H. J.; Griffin, Carol; Hennessy, D.; O'Callaghan, T. F.; O'Sullivan, M. G.; Kerry, J. P.; Kilcawley, Kieran (2021)
  • Breakage of infant milk formula through three different processing methods and its influence on powder properties

    Han, Jie; Fitzpatrick, John; Cronin, Kevin; Maidannyk, Valentyn; Miao, Song; Teagasc Walsh Fellowship Programme (Elsevier BV, 2020-10)
    Dairy powder breakage has always occurred during production and transportation though few studies on it have been published. This paper examines the breakage of infant formula using three different processing methods (laboratory high-speed mixing, lab-scale pneumatic conveying, and factory-scale blending) and the effect of breakage on powder properties. In both mixing and high-velocity pneumatic conveying, particles were broken into smaller entities and the particle size of samples significantly decreased. Particle breakage was accompanied by a significant decrease in porosity and increase in density and surface free fat. This in-turn decreased the rehydration properties of samples, especially for high-speed mixing, while breakage had only a small influence on powder flowability. By contrast, some agglomeration occurred during blending for short time in the blender and the particle size did not decrease (P > 0.05) even for blending at longer time, thus, there were only minor impacts on physical and functional properties of powders.
  • Characterization of the lying and rising sequence in lame and non-lame sows

    Mumm, Jared Michael; Calderon Diaz, Julia; Stock, Joseph Daniel; Kerr Johnson, Anna; Ramirez, Alejandro; Azarpajouh, Samaneh; Stalder, Kenneth J.; National Pork Board; #15-004 (Elsevier BV, 2020-05)
    This study aimed to identify possible differences in the lying and standing sequence between lame and non-lame gestating sows. A total of 85 stall-housed sows (average parity 0.9 ± 1.14; range 0–4) were scored for walking lameness on a 3-point scale (1 = normal to 3=severely lame) while moving to a separate gestation stall for recording of one lying-standing event on days 30, 60 and 90 of gestation. A video camera was positioned on the adjacent stall so sows’ profiles were visible. Observations ceased when the sow laid-down and stood-up, or 2.5 h elapsed from recording commencement. From videos, postures and movements that occurred during lying-standing sequences were identified. Time (seconds) from kneeling to shoulder rotation (KSR), shoulder rotation to lying (SRHQ), total time to lie (TLIE); latency to lie (LATENCY; minutes) and number of attempts to successfully lie were recorded. Also, time taken from first leg fold to sit (TLS), time from sit to rise (TSR), and total time to rise (TRISE) were recorded. Sows were re-classified as non-lame (score 1) and lame (scores ≥ 2). Data were analyzed using mixed model methods with gestation day, and lameness as fixed effects and sow the random effect. On average, sows took 14.3 ± 1.39 s for KSR, 7.7 ± 0.79 s for SRHQ, 21.0 ± 1.37 s for TLIE and 63.6 ± 5.97 min for LATENCY. Furthermore, sows took 8.8 ± 2.80 s for TLS, 5.95 ± 1.73 s for TSR, and 10.3 ± 2.02 s for TRISE. There were no associations between lameness status or gestation day with time required for or the likelihood of performing the different movements of the lying and standing sequences (P >  0.05). Except for lame sows tending to sit more while transitioning from lying to standing than non-lame sows (P =  0.09). Seven different lying and 4 different standing combination deviation from the normal sequences, albeit each combination was infrequent and did not allow for statistical analysis. However, all together, deviations from the normal lying and standing sequence accounted for 22.7 % and 35 % of total observations; respectively. Under the conditions of this study, lameness did not influence the time taken or the likelihood of performing different movements and/or postures during normal lying-standing sequences. However, this could be due to lameness recorded here not being severe enough to affect the sequences. The observed deviations suggest that there is variation in the way sows lie and stand although more research is necessary to understand which factors contribute to such variation.
  • Exploring Climate‐Smart Land Management for Atlantic Europe

    Schulte, Rogier P. O.; O'Sullivan, Lilian; Coyle, Cait; Farrelly, Niall; Gutzler, Carsten; Lanigan, Gary; Torres‐Sallan, Gemma; Creamer, Rachel E.; Dairy Research Trust; Department of Agriculture, Food and the Marine (Wiley, 2016-09)
    Core Ideas Managing soil organic carbon is an essential aspect of climate‐smart agriculture. Combining component research, we derive a soil carbon management concept for Ireland. Optimized soil carbon management is differentiated in accordance with soil type. Existing policy tools can be tailored to incentivize climate‐smart land management. Soils can be a sink or source of carbon, and managing soil carbon has significant potential to partially offset agricultural greenhouse gas emissions. While European Union (EU) member states have not been permitted to account for this offsetting potential in their efforts to meet the EU 2020 reduction targets, this policy is now changing for the period 2020 to 2030, creating a demand for land management plans aimed at maximizing the offsetting potential of land. In this letter, we derive a framework for climate‐smart land management in the Atlantic climate zone of the EU by combining the results from five component research studies on various aspects of the carbon cycle. We show that the options for proactive management of soil organic carbon differ according to soil type and that a spatially tailored approach to land management will be more effective than blanket policies.
  • A Systems-Wide Analysis of Proteolytic and Lipolytic Pathways Uncovers The Flavor-Forming Potential of The Gram-Positive Bacterium Macrococcus caseolyticus subsp. caseolyticus

    Mazhar, Shahneela; Kilcawley, Kieran; Hill, Colin; McAuliffe, Olivia; Teagasc Walsh Fellowship Program; 2015055 (Frontiers Media SA, 2020-07-07)
    Macrococcus caseolyticus subsp. caseolyticus is a Gram-positive, commensal organism documented to be present as a component of the secondary microflora in fermented foods such as Ragusano and Fontina cheeses and Cantonese sausage. In these products, the organism appears to play a role in ripening and the development of the final organoleptic qualities. However, the role of this organism in flavor generation is not well understood. Therefore, the objective of this study was to investigate the role of M. caseolyticus subsp. caseolyticus in flavor compound formation through an examination of enzymatic, metabolomic and genomic data. A bank of M. caseolyticus subsp. caseolyticus strains derived from a variety of niches were examined. Enzyme activities analyzed comprised those of the proteolytic and lipolytic cascades including cell-envelope proteinase (CEP), peptidases, esterases, lipases, aminotransferases and glutamate dehydrogenase (GDH). Strain to strain variation was observed, often associated with niche. All strains, except those isolated from non-dairy sources, demonstrated high CEP activity. Such high CEP activity associated with dairy strains implies the importance of this characteristic in the adaptation of these strains to a dairy-specific niche. However, limited downstream peptidolytic activity, in addition to a limited ability to generate free amino acids (FAA) was observed across all strains, indicating weak ability of this organism to generate amino-acid derived flavor compounds. Interestingly, the strains with high CEP activity also demonstrated high esterase activity and gas chromatography-mass spectrometry (GC-MS) analysis of the volatile compounds produced when these strains were grown in lactose-free milk demonstrated differences in the range and types of volatiles produced. In contrast to this metabolic versatility, comparative genome analysis revealed the distribution of components of the proteolytic and lipolytic system in these strains to be conserved. Overall, this study demonstrates the potential of M. caseolyticus subsp. caseolyticus to generate diverse volatile flavor compounds. Additionally, the identification of the highly active strain-specific cell wall bound caseolytic proteases deriving extensive casein hydrolysis, serves as a promising avenue which can be potentially harnessed in the future to produce greater and more diverse flavor compounds.

View more