Céad Mile Fáilte go T-Stór (Welcome to T- Stór)

T-Stór is Teagasc’s Open Access Repository, maintained by the Teagasc Library Service. Stór is the Gaelic word for Repository or Store or Warehouse, and T-Stór is an online “store” of Teagasc Research outputs and related documents. T-Stór collects preserves and makes freely available scholarly communication, including peer-reviewed articles, working papers and conference papers created by Teagasc researchers. Where material has already been published it is made available subject to the open-access policies of the original publishers. About Teagasc

Select a community to browse its collections.

Animal & Grassland Research & Innovation Programme [437]
Crops, Environment & Land Use Programme [246]
Food Programme [366]
Rural Economy & Development Programme [138]
Irish Journal of Agricultural & Food Research [233]
Other Teagasc Research [194]
  • Blood parameters as biomarkers in a Salmonella spp. disease model of weaning piglets

    Barba-Vidal, Emili; Buttow Roll, Victor Fernando; Garcia Manzanilla, Edgar; Torrente, Carlos; Moreno Muñoz, Jose Antonio; PeÂrez, Jose Francisco; Martin-Orue, Susana Maria; Spanish Ministry of Education and Science; Laboratorios Ordesa S.L.; CNPQ Brazil; AGL 2012-31924 (PLOS, 2017-10-26)
    Background The weaning pig is used as an experimental model to assess the impact of diet on intestinal health. Blood parameters (BP) are considered a useful tool in humans, but there is very scarce information of such indicators in the weaning pig. The objective of the present study is to evaluate the use of different BP as indicators in an experimental model of salmonellosis. Methodology Seventy-two 28-day-old piglets were divided into four groups in a 2x2 factorial arrangement, with animals receiving or not a probiotic combination based on B. infantis IM1® and B. lactis BPL6 (109 colony forming units (cfu)/d) and orally challenged or not a week later with Salmonella Typhimurium (5x108 cfu). Blood samples of one animal per pen (N = 24) were taken four days post-inoculation for the evaluation of different BP using an I-stat® System and of plasmatic concentrations of zinc, iron and copper. Principal findings Results reported marginal deficiencies of zinc in piglets at weaning. Moreover, plasmatic zinc, copper and iron presented good correlations with weight gain (r 0.57, r -0.67, r 0.54 respectively; P < 0.01). Blood electrolytes (Na+, Cl- and K+) decreased (P < 0.01) only when the performance of the animals was seriously compromised and clinical symptoms were more apparent. Acid-base balance parameters such as HCO3-, TCO2 and BEecf significantly correlated with weight gain, but only in the challenged animals (r -0.54, r -0.55, and r -0.51, respectively; P < 0.05), suggesting metabolic acidosis depending on Salmonella infection. Glucose was affected by the challenge (P = 0.040), while Htc and Hgb increased with the challenge and decreased with the probiotic (P < 0.05). Furthermore, correlations of Glu, Htc and Hgb with weight gain were observed (P < 0.05). Overall, BP could be regarded as simple, useful indexes to assess performance and health of weaning piglets.
  • Crop Establishment Practices Are a Driver of the Plant Microbiota in Winter Oilseed Rape (Brassica napus)

    Rathore, Ridhdhi; Dowling, David N.; Forristal, Patrick D.; Spink, John; Cotter, Paul D.; Bulgarelli, Davide; Germaine, Kieran J.; Teagasc Walsh Fellowship Programme; Royal Society of Edinburgh/Scottish Government Personal Research Fellowship (Frontiers, 2017-08-09)
    Gaining a greater understanding of the plant microbiota and its interactions with its host plant heralds a new era of scientific discovery in agriculture. Different agricultural management practices influence soil microbial populations by changing a soil’s physical, chemical and biological properties. However, the impact of these practices on the microbiota associated with economically important crops such as oilseed rape, are still understudied. In this work we investigated the impact of two contrasting crop establishment practices, conventional (plow based) and conservation (strip–tillage) systems, on the microbiota inhabiting different plant microhabitats, namely rhizosphere, root and shoot, of winter oilseed rape under Irish agronomic conditions. Illumina 16S rRNA gene sequence profiling showed that the plant associated microhabitats (root and shoot), are dominated by members of the bacterial phyla Proteobacteria, Actinobacteria and Bacteroidetes. The root and shoot associated bacterial communities displayed markedly distinct profiles as a result of tillage practices. We observed a very limited ‘rhizosphere effect’ in the root zone of WOSR, i.e., there was little or no increase in bacterial community richness and abundance in the WOSR rhizosphere compared to the bulk soil. The two tillage systems investigated did not appear to lead to any major long term differences on the bulk soil or rhizosphere bacterial communities. Our data suggests that the WOSR root and shoot microbiota can be impacted by management practices and is an important mechanism that could allow us to understand how plants respond to different management practices and environments.
  • Genetic variability in the humoral immune response to bovine herpesvirus-1 infection in dairy cattle and genetic correlations with performance traits

    Ring, S. C.; Graham, D. A.; Sayers, Riona; Byrne, N.; Kelleher, M. M.; Doherty, M. L.; Berry, Donagh P.; Department of Agriculture, Food and the Marine (Elsevier for American Dairy Science Association, 2018-04-26)
    Bovine herpesvirus-1 (BoHV-1) is a viral pathogen of global significance that is known to instigate several diseases in cattle, the most notable of which include infectious bovine rhinotracheitis and bovine respiratory disease. The genetic variability in the humoral immune response to BoHV-1 has, to our knowledge, not ever been quantified. Therefore, the objectives of the present study were to estimate the genetic parameters for the humoral immune response to BoHV-1 in Irish female dairy cattle, as well as to investigate the genetic relationship between the humoral immune response to BoHV-1 with milk production performance, fertility performance, and animal mortality. Information on antibody response to BoHV-1 was available to the present study from 2 BoHV-1 sero-prevalence research studies conducted between the years 2010 to 2015, inclusive; after edits, BoHV-1 antibody test results were available on a total of 7,501 female cattle from 58 dairy herds. National records of milk production (i.e., 305-d milk yield, fat yield, protein yield, and somatic cell score; n = 1,211,905 milk-recorded cows), fertility performance (i.e., calving performance, pregnancy diagnosis, and insemination data; n = 2,365,657 cows) together with animal mortality data (i.e., birth, farm movement, death, slaughter, and export events; n = 12,853,257 animals) were also available. Animal linear mixed models were used to quantify variance components for BoHV-1 as well as to estimate genetic correlations among traits. The estimated genetic parameters for the humoral immune response to BoHV-1 in the present study (i.e., heritability range: 0.09 to 0.16) were similar to estimates previously reported for clinical signs of bovine respiratory disease in dairy and beef cattle (i.e., heritability range: 0.05 to 0.11). Results from the present study suggest that breeding for resistance to BoHV-1 infection could reduce the incidence of respiratory disease in cattle while having little or no effect on genetic selection for milk yield or milk constituents (i.e., genetic correlations ranged from −0.13 to 0.17). Moreover, even though standard errors were large, results also suggest that breeding for resistance to BoHV-1 infection may indirectly improve fertility performance while also reducing the incidence of mortality in older animals (i.e., animals >182 d of age). Results can be used to inform breeding programs of potential genetic gains achievable for resistance to BoHV-1 infection in cattle.
  • A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies

    Cao, Yu; Fanning, Séamus; Proos, Sinéad; Jordan, Kieran; Srikumar, Shabarinath; Department of Agriculture, Food and Marine; Enterprise Ireland; 13/F/423; IP 2015 0380 (Frontiers, 2017-09-21)
    The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods.
  • Editorial: Microbial Food Safety along the Dairy Chain

    Fox, Edward M.; Fanning, Seamus; Corsetti, Aldo; Jordan, Kieran (Frontiers, 2017-08-23)
    Milk is susceptible to contamination with pathogenic and spoilage organisms and, therefore, Microbial food safety along the dairy chain is an important topic, from public health and industry perspectives. The dairy chain is an integral part of global food supply, with dairy food products a staple component of recommended healthy diets. The dairy food chain from production through to the consumer is complex, with various opportunities for microbial contamination of ingredients or food products, and as such interventions are key to preventing or controlling such contamination. Dairy foods often include a microbial control step in their production such as pasteurization, but in some cases may not, as with raw milk products. Microbial contamination may lead to a deterioration in food quality due to spoilage organisms, or may become a health risk to consumers should the contaminant be a pathogenic microorganism. As such food safety and food production are intrinsically linked.

View more