Céad Mile Fáilte go T-Stór (Welcome to T- Stór)

T-Stór is Teagasc’s Open Access Repository, maintained by the Teagasc Library Service. Stór is the Gaelic word for Repository or Store or Warehouse, and T-Stór is an online “store” of Teagasc Research outputs and related documents. T-Stór collects preserves and makes freely available scholarly communication, including peer-reviewed articles, working papers and conference papers created by Teagasc researchers. Where material has already been published it is made available subject to the open-access policies of the original publishers. About Teagasc

Select a community to browse its collections.

Animal & Grassland Research & Innovation Programme [872]
Crops, Environment & Land Use Programme [469]
Food Programme [874]
Rural Economy & Development Programme [228]
Irish Journal of Agricultural & Food Research [304]
Other [271]
  • Transcriptome characterization and differentially expressed genes under flooding and drought stress in the biomass grasses Phalaris arundinacea and Dactylis glomerata

    Klaas, Manfred; Haiminen, Niina; Grant, Jim; Cormican, Paul; Finnan, John; Arojju, Sai Krishna; Utro, Filippo; Vellani, Tia; Parida, Laxmi; Barth, Susanne; et al. (Oxford University Press (OUP), 2019-06-26)
    Background and Aims Perennial grasses are a global resource as forage, and for alternative uses in bioenergy and as raw materials for the processing industry. Marginal lands can be valuable for perennial biomass grass production, if perennial biomass grasses can cope with adverse abiotic environmental stresses such as drought and waterlogging. Methods In this study, two perennial grass species, reed canary grass (Phalaris arundinacea) and cocksfoot (Dactylis glomerata) were subjected to drought and waterlogging stress to study their responses for insights to improving environmental stress tolerance. Physiological responses were recorded, reference transcriptomes established and differential gene expression investigated between control and stress conditions. We applied a robust non-parametric method, RoDEO, based on rank ordering of transcripts to investigate differential gene expression. Furthermore, we extended and validated vRoDEO for comparing samples with varying sequencing depths. Key Results This allowed us to identify expressed genes under drought and waterlogging whilst using only a limited number of RNA sequencing experiments. Validating the methodology, several differentially expressed candidate genes involved in the stage 3 step-wise scheme in detoxification and degradation of xenobiotics were recovered, while several novel stress-related genes classified as of unknown function were discovered. Conclusions Reed canary grass is a species coping particularly well with flooding conditions, but this study adds novel information on how its transcriptome reacts under drought stress. We built extensive transcriptomes for the two investigated C3 species cocksfoot and reed canary grass under both extremes of water stress to provide a clear comparison amongst the two species to broaden our horizon for comparative studies, but further confirmation of the data would be ideal to obtain a more detailed picture.
  • Deficiency of essential dietary n-3 PUFA disrupts the caecal microbiome and metabolome in mice

    Robertson, Ruairi C.; Seira Oriach, Clara; Murphy, Kiera; Moloney, Gerard M.; Cryan, John F.; Dinan, Timothy G.; Ross, R. P.; Stanton, Catherine; Science Foundation Ireland; Health Research Board of Ireland; et al. (Cambridge University Press (CUP), 2017-11-27)
    n-3 PUFA are lipids that play crucial roles in immune-regulation, cardio-protection and neurodevelopment. However, little is known about the role that these essential dietary fats play in modulating caecal microbiota composition and the subsequent production of functional metabolites. To investigate this, female C57BL/6 mice were assigned to one of three diets (control (CON), n-3 supplemented (n3+) or n-3 deficient (n3−)) during gestation, following which their male offspring were continued on the same diets for 12 weeks. Caecal content of mothers and offspring were collected for 16S sequencing and metabolic phenotyping. n3− male offspring displayed significantly less % fat mass than n3+ and CON. n-3 Status also induced a number of changes to gut microbiota composition such that n3− offspring had greater abundance of Tenericutes, Anaeroplasma and Coriobacteriaceae. Metabolomics analysis revealed an increase in caecal metabolites involved in energy metabolism in n3+ including α-ketoglutaric acid, malic acid and fumaric acid. n3− animals displayed significantly reduced acetate, butyrate and total caecal SCFA production. These results demonstrate that dietary n-3 PUFA regulate gut microbiota homoeostasis whereby n-3 deficiency may induce a state of disturbance. Further studies are warranted to examine whether these microbial and metabolic disturbances are causally related to changes in metabolic health outcomes.
  • An investigation of the effect of rapid slurry chilling on blown pack spoilage of vacuum-packaged beef primals

    Reid, R.; Fanning, S.; Whyte, P.; Kerry, J.; Bolton, D.; Department of Agriculture, Fisheries and Food, Ireland (Wiley, 2017-01-12)
    The aim of this study was to investigate if rapid slurry chilling would retard or prevent blown pack spoilage (BPS) of vacuum-packaged beef primals. Beef primals were inoculated with Clostridium estertheticum subspp. estertheticum (DSMZ 8809), C. estertheticum subspp. laramenise (DSMZ 14864) and C. gasigenes (DSMZ 12272), and vacuum-packaged with and without heat shrinkage (90°C for 3 s). These packs were then subjected to immediate chilling in an ice slurry or using conventional blast chilling systems and stored at 2°C for up to 100 days. The onset and progress of BPS was monitored using the following scale; 0‑no gas bubbles in drip; 1‑gas bubbles in drip; 2‑loss of vacuum; 3‑‘blown’; 4‑presence of sufficient gas inside the packs to produce pack distension and 5‑tightly stretched, ‘overblown’ packs/packs leaking. Rapid slurry chilling (as compared to conventional chilling) did not significantly affect (P > 0.05) the time to the onset or progress of BPS. It was therefore concluded that rapid chilling of vacuum-packaged beef primals, using an ice slurry system, may not be used as a control intervention to prevent or retard blown pack spoilage.
  • Real-time PCR methods for the detection of blown pack spoilage causing Clostridium species; C. estertheticum, C. gasigenes and C. ruminantium

    Reid, Rachael; Burgess, Catherine M.; McCabe, Evonne; Fanning, Séamus; Whyte, Paul; Kerry, Joe; Bolton, Declan; Department of Agriculture, Food and the Marine (Ireland); Teagasc core funding (Elsevier, 2017-11)
    A set of real-time PCR methods for the detection of C. estertheticum, C. gasigenes and C. ruminantium, the causative agents of blown pack spoilage (BPS) in vacuum packaged beef, was developed. Robust validation of the sensitivity and specificity was carried out in the three matrices (beef meat drip, wet environmental swabs and dry environmental swabs) as encountered in our testing laboratory and against Clostridium strains (n = 76) and non-Clostridium strains (n = 36). It was possible to detect 4–5 spores per ml for C. estertheticum, 2 spores per ml for C. gasigenes and 8 spores per ml for C. ruminantium, without the need for enrichment of the samples. This high sensitivity is particularly important for the beef sector, not just for testing spoiled product but also in the early detection of contaminated beef and in validation of sporicidal cleaning procedures for critical pieces of equipment such as the vacuum packaging machine, which have the potential to contaminate large volumes of product.
  • Bifidobacterium breve with α-linolenic acid alters the composition, distribution and transcription factor activity associated with metabolism and absorption of fat

    Patterson, Elaine; Wall, Rebecca; Lisai, Sara; Ross, R. Paul; Dinan, Timothy G.; Cryan, John F.; Fitzgerald, Gerald F.; Banni, Sebastiano; Quigley, Eamonn M.; Shanahan, Fergus; et al. (Springer Science and Business Media LLC, 2017-03-07)
    This study focused on the mechanisms that fatty acid conjugating strains - Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 - influence lipid metabolism when ingested with α-linolenic acid (ALA) enriched diet. Four groups of BALB/c mice received ALA enriched diet (3% (w/w)) either alone or in combination with B. breve NCIMB 702258 or B. breve DPC 6330 (109 CFU/day) or unsupplemented control diet for six weeks. The overall n-3 PUFA score was increased in all groups receiving the ALA enriched diet. Hepatic peroxisomal beta oxidation increased following supplementation of the ALA enriched diet with B. breve (P < 0.05) and so the ability of the strains to produce c9t11 conjugated linoleic acid (CLA) was identified in adipose tissue. Furthermore, a strain specific effect of B. breve NCIMB 702258 was found on the endocannabinoid system (ECS). Liver triglycerides (TAG) were reduced following ALA supplementation, compared with unsupplemented controls (P < 0.01) while intervention with B. breve further reduced liver TAG (P < 0.01), compared with the ALA enriched control. These data indicate that the interactions of the gut microbiota with fatty acid metabolism directly affect host health by modulating n-3 PUFA score and the ECS.

View more