Effect of castration and age at slaughter on sensory perception of lamb meat

Vasili Gkarane, Paul Allen, Rufielyn S. Gravadora, Michael G. Diskin, Noel A. Claffey, Alan G. Fahey, Nigel P. Brunton, Linda J. Farmer, Aidan P. Moloney, Frank J. Monahan

A R T I C L E I N F O

Keywords:
Ram
Castrate
Flavour
Eating quality
Quantitative descriptive analysis

A B S T R A C T

This study assessed the effect of castration and slaughter age (196–385 days old) on sensory quality of lamb meat from two sheep breeds (Scottish Blackface, SB; Texel x Scottish Blackface, TxB). Results obtained using a trained sensory panel showed small but statistically significant differences due to castration, with rams having higher scores for Intensity of Lamb Aroma, Animal Smell/Forb Smell, Woolly Aroma, Rancid Aroma, Manure/Faecal Aroma, Sweaty Aroma and Off-flavours. SB lamb had higher scores for Intensity of Lamb Aroma, Lamb Flavour, Lamb Aftertaste, Tenderness and Juiciness. Age effects on sensory attributes were not linear and significant age x gender interactions were observed. The number of samples considered “extreme” in undesirable flavour attributes was higher among rams and T x SB animals. The impact of the sensory differences on consumer acceptability of lamb remains to be established.

1. Introduction

Consumer liking of cooked lamb is not universal (Young et al., 2003) and some studies have shown a lower preference for lamb compared to other meats (Crouse et al., 1983; Duckett and Kuber, 2001; Wong et al., 1975). One of the reasons for lower preference/consumption of lamb is its distinctive flavour (Hornein and Crowe, 1963; Sink and Caparoso, 1977), sometimes associated with a waxy texture (Young et al., 1994). The sensory quality of lamb meat has been explored by many researchers (Hoffman et al., 2003; Priolo et al., 2002; Resconi et al., 2009; Rousset-Akrim et al., 1997) and is believed to be affected by factors such as gender (Purchas et al., 1979; Young et al., 2003), diet (Watkins et al., 2013), age at slaughter (Pethick et al., 2005) and breed (Hoffman et al., 2003; Notter et al., 1991). However, the nature and the extent of the influence of these factors, and their interactions, on lamb palatability are often unclear. Sanudo et al. (2007) highlighted the difficulty in defining the lamb characteristics, or types of lamb products, that would be acceptable to consumers in European countries. They attributed this difficulty to the variability in sheep production systems across Europe due to different husbandry conditions (local environmental conditions and agricultural methods). This high variability in production methods, and the need to understand how they relate to meat quality, emphasises the requirement for controlled studies, which through the elimination of confounding comparisons, identify the real influence of production factors on lamb flavour (Hopkins and Mortimer, 2014; Purchas, 2007).

Leaving lambs uncastrated results in improved animal performance and production efficiency which has economic benefits for producers (Dransfield et al., 1990; Purchas et al., 1979) while meeting increasing consumer demand for leaner meat, since ram carcasses are leaner (Dransfield et al., 1990; Field, 1971; Seideman et al., 1982). Age at slaughter also influences production efficiency and ultimate meat quality and, while the quality of meat from younger and older lambs differs, unravelling the age effects on quality characteristics is not simple because animal age is almost invariably confounded with other factors (Purchas, 2007). Thus, for example, lambs fed on cereal concentrate-based diets have higher average daily gains than those on pasture and, therefore, animals slaughtered at a fixed age differ in weight while those slaughtered at a fixed weight differ in age (Priolo et al., 2002). Breed type can also affect meat quality, leading to differences in the amount and deposition of fat, in combination with parameters like live weight, age and degree of maturity (Guerrero et al.,...
2013). The objective of this study was to investigate the effects of castration (rams vs castrates) and slaughter age (five different slaughter ages) on the sensory quality, particularly the flavour quality, of lamb meat derived from two breed types.

2. Materials and methods

2.1. Animal husbandry, slaughter and sampling

Two hundred lambs (100 Texel x Scottish Blackface (T x SB), 100 Scottish Blackface (SB)) were sourced from Irish farms in March 2014. Within each breed type 50 lambs were castrated within 48 h of birth. Lambs were raised at pasture from birth, weaned at 130 days and selected for slaughter in groups of 40 (10 T x SB rams, 10 T x SB castrates, 10 SB rams, 10 SB castrates) in October 2014, November 2014, January 2015, March 2015 and April 2015, with the heaviest ram and castrate lambs selected for slaughter at each slaughter date. On selection, lambs were housed individually in slatted pens and, following a 12 d adaptation period during which the lambs were gradually introduced to a barley/maize-based concentrate ration and grass silage, they received ad libitum a finishing diet consisting of the barley/maize-based concentrate ration (95% dietary dry matter (DM) intake) and grass silage (5% DM intake) for 36 d pre-slaughter. Lambs were maintained in close proximity, but separate from, cyclic females while at pasture and following housing. At the end of the finishing period, lambs were transported to a commercial abattoir (Gillivan’s, Moate, Co. Westmeath) for slaughter. The mean ages of the lambs at slaughter in October, November, January, March and April were 196, 242, 293, 344 and 385 days, respectively. A total of 198 animals were presented for slaughter (two SB rams died over the course of the experiment). After slaughter, carcasses were chilled overnight and transported to Teagasc, Food Research Centre, Ashtown, Dublin 15, Ireland for dissection. Mean carcass weights (± standard deviation) for the SB and T x SB animals of 20.8 (± 1.89) and 25.7 (± 2.43) kg, respectively, and for the rams and castrates of 23.2 (± 3.28) and 23.3 (± 3.31) kg, respectively, were recorded. Ultimate pH (pHu) of M. longissimus thoracis et lumborum (LTL) was measured 25 h post slaughter at the 13th rib using a SympHony SP70P hand-held pH meter (VWR, Dublin, Ireland). The LTL was excised from each carcass, cut into 2.5 cm thick steaks, vacuum packed, aged for 8 d at 4 °C and frozen at −20 °C until required for analysis. The study was carried out under licence from the Irish Government Department of Health and all procedures used complied with national regulations concerning experimentation on farm animals (HRB, 2011).

2.2. Compositional analysis

Samples of LTL were thawed overnight at 4 °C and homogenized using a Kenwood CH180 Compact Mini Chopper (Kenwood, Hampshire, UK). Moisture and intramuscular fat (IMF) contents were determined using the SMART Trac Rapid Fat Analyzer (CEM Corporation, NC, USA) according to AOAC Methods 985.14 and 985.26 (AOAC, 1990), respectively. Protein concentration was determined using a LECO FP328 (LECO Corp., MI, USA) protein analyzer based on the Dumas method and according to AOAC method 992.15 (AOAC, 1990). Ash was determined following incineration of samples overnight in a furnace at 540 °C. Branched chain fatty acids (BCFAs) were analysed using microwave assisted preparation of FAMEs (Brunton et al., 2015) with separation and quantification by GC-FID (PerkinElmer Clarus 580, PerkinElmer; 2B-5 column, 30 m x 0.25 mm internal diameter, 0.25 μm film thickness). The results were reported in μg/g with the response factor for each FAME set to 1.

2.3. Sensory analysis

2.3.1. Lamb meat preparation

The LTL muscle from the left side of each carcass was used for sensory analysis which took place at Teagasc Food Research Centre, Ashtown. On the days of sensory tasting, frozen steaks were thawed by immersion in water at room temperature for 45 min. Steaks were grilled, with adhering fat attached, to an internal temperature of 70 °C, using a Tefal OptiGrill clamp grill (Currys, Dublin, Ireland). On reaching 70 °C (monitored using a hand-held digital thermometer (Eurolec, Dublin, Ireland)) the steaks were removed from the grill, wrapped with aluminum foil and allowed to rest for 3 min. Each steak was unwrapped and following removal of the subcutaneous fat, cut into 8 pieces of approximately 2 cm². Samples were re-wrapped with foil, assigned a random three-digit code, held in an oven set at 60 °C and served to the panelists within 20 min. Samples from 193 animals were used for sensory analysis (of the initial 200 animals, samples from five (3 T x SB castrates, 1 SB ram, 1 SB castrate) were deemed unsuitable for human consumption in addition to the two lost during the production phase).

2.3.2. Panel training

Staff at Teagasc Food Research Centre, Ashtown, participated as sensory panellists, selected based on their availability, their interest in the project and their sensitivity as assessors following two screening sessions. Panelists participated in 16 training sessions. In the initial training sessions, a range of samples that included the flavours and off-flavours similar to those of interest were used. Samples of lamb meat, some with adhering fat, were presented to panelists who described the sensory attributes they perceived and generated descriptors for flavour, aroma, texture/mouthfeel, taste and aftertaste. In addition, in two sessions, panelists received lamb samples spiked with some of the recognised lamb flavour/aroma compounds (i.e. BCFAs, skatole, indole, p/m-cresol and 3-methylpentanoic acid) to aid in the generation of aroma descriptors. Sessions using physical and chemical reference standards were run so that the panelists would learn to differentiate and identify the sensory descriptors (Table 1). Training in the intensities of odour, flavour and texture (chewiness, tenderness and juiciness) was carried out based on the study of Braghieri et al. (2012) (adjusted for lamb, as opposed to beef). In brief, for low, medium and high odour/flavour intensity, lamb loin boiled for 15 min, microwave cooked (4.5 min at 800W), or grilled to an internal temperature 70 °C (using an electric grill preheated at 240 °C), respectively, was prepared. For low, medium and high chewiness/tenderness intensity, lamb shank cooked to an internal temperature of 70 °C, side loin cooked to an internal temperature of 70 °C and centre loin cooked to an internal temperature of 65 °C, respectively, were prepared. For juiciness of low, medium and high intensity side loin cooked to internal temperatures of 80 °C, 70 °C or 64 °C, respectively, was prepared. Training sessions were informed by AMSA (2015) guidelines.

2.3.3. Quantitative descriptive analysis

Quantitative descriptive analysis (QDA) was performed on one day per week over 16 weeks with two sensory sessions per day (morning and afternoon). In each session, 6 samples were assessed using a balanced and randomized design. Panellists were asked to rate 38 attributes (generated during the training) for each sample, by marking a point on a 100 mm unstructured line scale. The sensory attribute definitions, agreed during the training sessions (Table 1), were available to each panellist during tasting. Panellist evaluations were recorded using Compusense 5 (v4.4, Compusense Inc., Guelph, Ontario, Canada).

2.4. Statistical analysis

Data were tested for the normality of the residuals for each variable. In the case of non-normal distribution, data were transformed using the
The MAD statistic is estimated by the full set of sensory attributes is available in supplementary Table S1. Among animals in any of the treatments. The MAD statistic applied to determining whether there was a preponderance of these attributes

Flavour

Intensity of Roast Meat Flavour
Flavour associated with cooked meat
Low–High
Adapted from Braghieri et al. (2012)

Intensity of Lamb Flavour
Flavour intensity of cooked lamb
Low–High
Adapted from Braghieri et al. (2012)

Grassy
Flavour associated with freshly cut green grass
Not–Very
Liquid iron supplement in water

Metallic/Bloody
Flavour associated with iron or blood
Low–High

Soapy
A detergent-like taste, similar to when a food is tainted with a cleansing agent
Low–High

Rancid
Flavour associated with oxidized oil/fat
Low–High

Farmyard
Musty flavour, associated with horse-stable/damp earth
Low–High

Sweet
Sucrose like flavour
Low–High
Sucrose solution (4%) (0.06%) (Version 19.01.4164; Addinsoft, Paris, France) and all variables were standardized to unit variance and zero mean prior to the analysis.

Table 1

<table>
<thead>
<tr>
<th>Sensory attributes</th>
<th>Attribute description</th>
<th>Scale used</th>
<th>Reference used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroma</td>
<td>Intensity of roast meat aroma</td>
<td>Weak–Strong</td>
<td>Adapted from Braghieri et al. (2012)</td>
</tr>
<tr>
<td>Intensity of Lamb Aroma</td>
<td>Aroma associated with cooked lamb</td>
<td>Weak–Strong</td>
<td>Adapted from Braghieri et al. (2012)</td>
</tr>
<tr>
<td>Grassy aroma</td>
<td>Intensity of freshly cut grass</td>
<td>Unsalted butter</td>
<td>Weak–Strong</td>
</tr>
<tr>
<td>Aromatic/Herbal</td>
<td>Aroma associated with dried herbs</td>
<td>Weak–Strong</td>
<td>Hexanal,100 ppm in propylene glycol (PG)</td>
</tr>
<tr>
<td>Metallic/Bloody</td>
<td>Aroma of blood</td>
<td>Weak–Strong</td>
<td>Dried mixture of herbs</td>
</tr>
<tr>
<td>Animal Smell/Farm Smell</td>
<td>Aroma of barnyard, horse-stable</td>
<td>Weak–Strong</td>
<td>m-cresol, 10 ppm in PG</td>
</tr>
<tr>
<td>Woolly</td>
<td>Fleecy-animal aroma, cheesy-like aroma</td>
<td>Weak–Strong</td>
<td>3-methyl-pentanoic acid, 10 ppm in PG</td>
</tr>
<tr>
<td>Buttery</td>
<td>Aroma associated with natural, fresh, unsalted butter</td>
<td>Weak–Strong</td>
<td>Lamb fat</td>
</tr>
<tr>
<td>Fatty</td>
<td>Aroma of cooked fat</td>
<td>Weak–Strong</td>
<td>Rancid oil mixture</td>
</tr>
<tr>
<td>Rancid</td>
<td>Aroma associated with oxidized oil/fat</td>
<td>Weak–Strong</td>
<td>Skatole, 10 ppm in PG</td>
</tr>
<tr>
<td>Manure/Feecal</td>
<td>Aroma associated with animal dung</td>
<td>Weak–Strong</td>
<td>Acetic acid, 10 ppm in PG</td>
</tr>
<tr>
<td>Sour</td>
<td>Pungent aroma associated with vinegar or lemon</td>
<td>Weak–Strong</td>
<td>4-methyloctanionic acid, 10 ppm in PG</td>
</tr>
<tr>
<td>Sweaty</td>
<td>Aroma reminiscent of perspiration generated by foot odour, waxy, stale, moist</td>
<td>Weak–Strong</td>
<td>Non-fragrant soap</td>
</tr>
<tr>
<td>Soapy</td>
<td>Detergent, alkaline aroma, non-fragrant soap</td>
<td>Weak–Strong</td>
<td>Fresh cut mushrooms or 1-octen-3-ol, 100 ppm in PG</td>
</tr>
<tr>
<td>Earthy-smell</td>
<td>Musty, wet-soil, reminding freshly-cut mushrooms</td>
<td>Weak–Strong</td>
<td></td>
</tr>
</tbody>
</table>

Box-Cox transformation (Fahey et al., 2007). The data were analyzed using a mixed model with gender, age, breed and their interactions (gender × age, gender × breed, age × breed, gender × age × breed) as fixed effects. The sensory analysis session was considered as the random effect. Analysis was conducted in the MIXED procedure of SAS (v9.4).

The Median Absolute Deviation (MAD) statistic (Leys et al., 2013; Wilcox, 2010) was applied to determine the extent to which sensory scores could be considered ―extreme‖ or as ―outliers‖. In this manuscript it was applied to seven sensory attributes considered ―undesirable‖ – Animal Smell/Farm Smell (Ames and Sutherland, 1999; Erasmus et al., 2016), Woolly Smell, Rancid Aroma (Tejeda et al., 2008), Manure/Feecal Aroma (Leighton et al., 2007) Rancid Flavour, Farmyard Flavour (Erasmus et al., 2016), Off-flavours – with the objective of determining whether there was a preponderance of these attributes among animals in any of the treatments. The MAD statistic applied to the full set of sensory attributes is available in supplementary Table S1. The MAD statistic is estimated by first subtracting the median (M) from every observation (x1, x2,…xn), calculating the median of the absolute values: | x1 – M|, | x2 – M|,…| xn – M| and multiplying the latter by 1.4826. Choosing the threshold two, the value X is considered an outlier if: |x – M| > 2 × (MAD × 1.4826) (Leys et al., 2013; Wilcox, 2010).

Correlations between the sensory attributes and other parameters (IMF, pHu and BCFA) (the full BCFA dataset to be published in a companion manuscript (Gravadar et al., 2017) were determined by means of Spearman’s correlation coefficient (r). Analysis was conducted using the CORR procedure of SAS (v9.4). Principal component analysis (PCA) (Pearson-type) was performed using XLSTAT statistical software (Version 19.01.41647; Addinsoft, Paris, France) and all variables were standardized to unit variance and zero mean prior to the analysis. Varimax rotation was applied to the PCA (Fig. 1) to facilitate interpretation of the data (Hair et al., 1998).

3. Results

3.1. Compositional analysis

Lamb from rams had lower (P < 0.001) fat content and higher…
moisture content than lamb from castrates (Table 2).

T × SB lamb had higher (P < 0.001) protein content and lower
(P < 0.001) fat content than SB lamb. There was a gender × age in-
teraction for pHu whereby the pHu values of LTL from rams and cas-
trates were not di
102x107ff
ferent (P > 0.05) in October, March and April but
they were higher for rams than castrates in November (P < 0.01) and
January (P < 0.001).

3.2. Sensory analysis

Twenty four of the 38 sensory descriptors measured were affected
by treatment (Tables 3 and 4). The differences between the two gen-
ders, although numerically small, were statistically significant for 11
descriptors. Lamb from rams had higher mean scores for Intensity of
Lamb Aroma (P = 0.01), Animal Smell/Farm Smell (P < 0.01), Woolly

3Rams (R), Castrates (C), October (O), November (N), January (J), March (M), April (A), Scottish Blackface (SB), Texel x Scottish Blackface (T × SB)
a,b,c Means assigned differ
significantly between ages (P < 0.05)
3Mean pHu values in LTL of 5.37, 5.63, 5.57, 5.61 and 5.64 for rams and of 5.38, 5.63, 5.61 and 5.64 for castrates in October, November, January, March and April, respectively

Table 2
Least square mean values for proximate analysis and pHu of LTL muscle as influenced by gender, age at slaughter and breed.

<table>
<thead>
<tr>
<th>Gender (G)</th>
<th>Age at slaughter (A)</th>
<th>Breed (B)</th>
<th>SEM</th>
<th>P values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>C</td>
<td>O</td>
<td>N</td>
<td>J</td>
</tr>
<tr>
<td>Fat</td>
<td>2.61</td>
<td>3.19</td>
<td>2.68</td>
<td>2.82</td>
</tr>
<tr>
<td>Protein</td>
<td>21.4</td>
<td>21.5</td>
<td>21.5</td>
<td>21.4</td>
</tr>
<tr>
<td>Moisture</td>
<td>74.8</td>
<td>74.0</td>
<td>74.4</td>
<td>74.3</td>
</tr>
<tr>
<td>Ash</td>
<td>1.14</td>
<td>1.12</td>
<td>1.16a</td>
<td>1.15a</td>
</tr>
<tr>
<td>pHu</td>
<td>5.65</td>
<td>5.52</td>
<td>5.37a</td>
<td>5.55b</td>
</tr>
</tbody>
</table>

Fig. 1. Principal component analysis (PCA) loadings plots indicating the least square means of the sensory attributes, BCFAs, pHu and IMF as affected by gender - age groups. “Ar”, “Fl” and “Aft” refer to Aroma, Flavour and Aftertaste attributes, respectively. 4-BOA, 4-ethyloctanoic acid; 4-MOA, 4-methyloctanoic acid; 4-MNA, 4-methylnonanoic acid detected in subcutaneous fat. “OR”, October rams; “OC”, October castrates; “NR”, November rams; “NC”, November castrates; “JR”, January rams; “JC”, January castrates; “MR”, March rams; “MC”, March castrates.

V. Gkarane et al.
Small Ruminant Research xxx (xxxx) xxx–xxx

4
lamb. The effect of age on Animal Smell/Farm Smell approached significance (P = 0.052) with March and April having lower scores (P < 0.05) than October, and April scores having lower scores than November. Similarly, the effect of age on Manure/Faecal Aroma and Rancid Flavour approached significance (P = 0.068 and P = 0.051, respectively). For Manure/Faecal Aroma, January lamb had higher score than March (P < 0.01) and January (P < 0.01) but not in the other months. In addition, Rancid Flavour November lamb had higher score than October, March and April lamb (P < 0.05).

Lamb from SB had higher mean scores for Intensity of Lamb Aroma (P < 0.001), Intensity of Lamb Flavour (P < 0.001) and Intensity of Lamb Aftershape (P < 0.05) than T × SB (Table 3). Lamb from SB also scored higher for Tenderness (P < 0.001) and Juiciness (P < 0.05) and lower for Chewiness (P < 0.001), Stringiness (P < 0.001) and Stickiness/Fibrousness (P < 0.05) than the T × SB lamb. On the other hand, T × SB had higher scores (P < 0.05) for Aromatic/Herbal Aroma (P < 0.01), Soapy Aroma (P < 0.01), Soapy Flavour (P < 0.05) and Dry Aftershape (P < 0.05). Differences in Animal Smell/Farm Smell and Astringent Aftershape were close to significance (P = 0.066 and P = 0.068, respectively) with T × SB having higher scores than SB, while Fatty Aroma and Fattiness/Greasiness approached significance (P = 0.081 and P = 0.073, respectively) with SB scoring higher than T × SB.

Significant gender × age interactions were found for five attributes (Table 4) and two approached significance. Mean scores for Intensity of Roast Meat Aroma were higher for lamb from castrates than rams in November (P < 0.01) and January (P < 0.01) but not in the other months. In addition, Intensity of Roast Meat Aroma increased with age in lamb from rams but not in castrates. Similarly, for Intensity of Roast Meat Flavour scores for castrates were higher than rams in November (P = 0.0001) and January (P < 0.01) but not in the other months. There were no significant differences in Intensity of Roast Meat Flavour due to age in castrates; however, in rams, November lamb had a lower mean score than October (P < 0.05), March (P = 0.0001) and April (P < 0.01) lamb but was similar to January lamb (P > 0.05). For

Table 3
Least Square Mean scores for sensory attributes in grilled LTL muscle as affected by gender, age at slaughter and breed.

<table>
<thead>
<tr>
<th>Gender (G)</th>
<th>Age at slaughter (A)</th>
<th>Breed (B)</th>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity of Roast Meat Aroma</td>
<td>49.4</td>
<td>54.0</td>
<td>50.9*</td>
</tr>
<tr>
<td>Intensity of Lamb Aroma</td>
<td>49.5</td>
<td>50.6</td>
<td>49.1</td>
</tr>
<tr>
<td>Grassy Aroma</td>
<td>10.8</td>
<td>11.3</td>
<td>11.2</td>
</tr>
<tr>
<td>Metallic/Bloody</td>
<td>36.1</td>
<td>35.4</td>
<td>35.3</td>
</tr>
<tr>
<td>Aromatic/Herbal</td>
<td>10.8</td>
<td>10.8</td>
<td>11.2</td>
</tr>
<tr>
<td>Fatty Aroma</td>
<td>6.7</td>
<td>5.8</td>
<td>6.2</td>
</tr>
<tr>
<td>Rancid</td>
<td>9.1</td>
<td>7.0</td>
<td>7.7</td>
</tr>
<tr>
<td>Manure/Faecal Aroma</td>
<td>10.2</td>
<td>8.6</td>
<td>9.1</td>
</tr>
<tr>
<td>Sour</td>
<td>9.7</td>
<td>8.9</td>
<td>9.2*</td>
</tr>
<tr>
<td>Sweet</td>
<td>5.8</td>
<td>6.5</td>
<td>6.2</td>
</tr>
<tr>
<td>Off-flavours</td>
<td>13.0</td>
<td>9.7</td>
<td>10.4</td>
</tr>
<tr>
<td>Flavour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity of Roast Meat Flavour</td>
<td>48.9</td>
<td>54.0</td>
<td>50.9*</td>
</tr>
<tr>
<td>Intensity of Lamb Flavour</td>
<td>49.5</td>
<td>50.6</td>
<td>49.1</td>
</tr>
<tr>
<td>Grassy</td>
<td>10.8</td>
<td>11.3</td>
<td>11.2</td>
</tr>
<tr>
<td>Metallic/Bloody</td>
<td>36.1</td>
<td>35.4</td>
<td>35.3</td>
</tr>
<tr>
<td>Aromatic/Herbal</td>
<td>10.8</td>
<td>10.8</td>
<td>11.2</td>
</tr>
<tr>
<td>Fatty Flavour</td>
<td>6.7</td>
<td>5.8</td>
<td>6.2</td>
</tr>
<tr>
<td>Rancid</td>
<td>9.1</td>
<td>7.0</td>
<td>7.7</td>
</tr>
<tr>
<td>Sour</td>
<td>9.7</td>
<td>8.9</td>
<td>9.2*</td>
</tr>
<tr>
<td>Sweet</td>
<td>5.8</td>
<td>6.5</td>
<td>6.2</td>
</tr>
<tr>
<td>Off-flavours</td>
<td>13.0</td>
<td>9.7</td>
<td>10.4</td>
</tr>
<tr>
<td>Texture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenderness</td>
<td>60.4</td>
<td>62.6</td>
<td>61.6*</td>
</tr>
<tr>
<td>Juiciness</td>
<td>46.4</td>
<td>47.7</td>
<td>46.1</td>
</tr>
<tr>
<td>Chewiness</td>
<td>41.4</td>
<td>41.8</td>
<td>40.6*</td>
</tr>
<tr>
<td>Fattiness/Greasiness</td>
<td>33.3</td>
<td>31.3</td>
<td>31.7</td>
</tr>
<tr>
<td>Stringiness/Fibrousness</td>
<td>30.3</td>
<td>32.6</td>
<td>30.7*</td>
</tr>
<tr>
<td>Stickiness</td>
<td>26.1</td>
<td>28.0</td>
<td>26.3</td>
</tr>
<tr>
<td>Aftershape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity of Lamb Aftershape</td>
<td>43.8</td>
<td>44.5</td>
<td>43.9</td>
</tr>
<tr>
<td>Soapy</td>
<td>10.9</td>
<td>10.3</td>
<td>10.4</td>
</tr>
<tr>
<td>Metallic/Bloody</td>
<td>37.4</td>
<td>36.1</td>
<td>36.5</td>
</tr>
<tr>
<td>Fatty/Greasy</td>
<td>22.1</td>
<td>20.6</td>
<td>21.3</td>
</tr>
<tr>
<td>Dry</td>
<td>14.7</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Astringent</td>
<td>12.9</td>
<td>13.1</td>
<td>13.0</td>
</tr>
</tbody>
</table>

1 Rams (R), Castrates (C), October (O), November (N), January (J), March (M), April (A), Scottish Blackface (SB), Texel x Scottish Blackface (T × SB)
2 Mean values for attributes evaluated on a 100-point unstructured line scale (0 = low intensity; 100 = high intensity)
3,4,5 Means assigned different superscripts differ significantly between ages (P ≤ 0.05)
6 P values on the threshold of statistical significance (P = 0.052)
Manure/Faecal Aroma, rams had higher mean scores than castrates in November (P < 0.05) and January (P < 0.01). In addition, in rams, January and November scores were higher than March (P < 0.01) and April (P < 0.05) while in castrates there were no significant differences due to age. For Rancid Flavour, in rams November scores were higher than January (P < 0.01), March (P < 0.001) and April scores (P < 0.001), while October scores were also higher than March (P < 0.05). In castrates there was no difference (P > 0.05) due to age for this attribute. Lamb from rams had a higher Rancid Flavour score than castrates in October (P < 0.01) and November (P < 0.001). For Off-flavours, rams had higher mean scores than castrates only in November (P < 0.01) and January (P < 0.01). In rams, only November scores were higher than April scores (P < 0.01) while in castrates there were no significant differences due to age. For Fattiness/Greasiness, the gender × age interaction approached significance (P = 0.057) (data not shown); thus, rams had higher mean scores than castrates only in October (P < 0.05) and November (P < 0.01). In addition, in rams, November scores were higher than January (P < 0.05) and March (P < 0.05) while in castrates April scores were higher (P < 0.05) than October scores. Similarly for Rancid Aroma the gender × age interaction approached significance (P = 0.057) (data not shown); rams had higher mean scores than castrates only in October (P < 0.05) and January (P < 0.01).

An age × breed interaction was found for Manure/Faecal Aroma (P < 0.05) (Table 4); thus, for SB lambs, scores were lower than October (P < 0.01), November (P < 0.01) and January (P < 0.01) whereas for T × SB lambs January scores were higher (P ≤ 0.05) than October scores. In addition, SB lambs scored lower (P < 0.05) than T × SB lambs in April, but not in the other months.

A gender × breed interaction was found for Soapy Aroma whereby there was no difference in mean scores between ram and castrates in SB, but scores were higher (P < 0.01) for rams than castrates in T × SB (Table 4). For Soapy Aftertaste the gender × breed interaction approached significance (P = 0.061) (data not shown) whereby SB rams had lower scores than T × SB rams (P < 0.05) and T × SB rams had higher scores than T × SB castrates (P < 0.05). A gender × age × breed interaction was found for Fatty Aroma (data not shown).

Using the MAD statistic, a higher percentage of rams than castrates (34% vs 17%) exceeded the cut-off (i.e. were considered “outliers” as defined in 2.4) for at least one of the seven aroma and flavour attributes tested (Table 5). Similarly, a higher percentage of T × SB compared to SB (32% vs 19%) were considered outliers. There was no clear age effect and lambs from all slaughter ages were included among the animals exceeding the cut-off values (data not shown).

Principal component analysis (Fig. 1), in which PC1 explained 33.3% and PC2 explained 18.13% of the variance, divided the gender-age groups into two categories: groups of October rams, November rams and January rams on the right side and the other gender-age groups on the left side of the plot. November rams were associated mostly with Intensity of Lamb Aroma, Rancid Aroma, Rancid Flavour, Farnyard Flavour and Off-flavours (factor loadings 0.7–1 in PC1). January rams were more associated with Manure Aroma, Sweaty Aroma, Animal Smell/Farm Smell, Sour Aroma, Metallic Aroma, Woolly Aroma, Sour Flavour and Soapy Flavour (factor loadings 0.7–1 in PC1). Groups on the lower left quadrant (October castrates, November castrates, January castrates) were broadly associated with Intensity of Roast Meat Aroma, Intensity of Roast Meat Flavour, Intensity of Lamb Flavour, Grassy Flavour, Sweet Flavour and Buttery Aroma. April lambs on the upper left quadrant were characterised more by textual attributes (Chewiness, Stringiness and Stickiness).

Principal component analysis (Supplementary Fig. S1), in which PC1 explained 51.54% and PC2 explained 38.18% of the variance, also showed a clear separation among the four gender-breed groups: SB rams and SB castrates, T × SB rams and T × SB castrates. For the sensory characteristics PC1 separated T × SB rams (in the right quadrant) from SB castrates (in the left quadrant). This separation was driven by the association of T × SB rams with the attributes Grassy

Table 4
Significant interactions for sensory attributes between gender, age and slaughter breed.

<table>
<thead>
<tr>
<th>Gender (G)</th>
<th>Age at slaughter (A)</th>
<th>Breed (B)</th>
<th>SEM</th>
<th>P values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R/C</td>
<td>O</td>
<td>N</td>
<td>J</td>
</tr>
<tr>
<td>Intensity of Roast Meat Aroma</td>
<td>R</td>
<td>58.9ab</td>
<td>55.4ab</td>
<td>57.0abc</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>61.9bc</td>
<td>62.8abc</td>
<td>64.6abc</td>
</tr>
<tr>
<td>Manure/Faecal Aroma</td>
<td>R</td>
<td>4.9bc</td>
<td>6.2bc</td>
<td>7.0bc</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4.1</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Soapy Aroma</td>
<td>R</td>
<td>3.7</td>
<td>5.2ab</td>
<td>5.7ab</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3.7</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>Intensity of Roast Meat Flavour</td>
<td>R</td>
<td>50.1abc</td>
<td>43.3abc</td>
<td>45.1abc</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>51.9</td>
<td>54.2bc</td>
<td>56.7bc</td>
</tr>
<tr>
<td>Rancid Flavour</td>
<td>R</td>
<td>10.1abc</td>
<td>12.7abc</td>
<td>8.3ab</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5.4b</td>
<td>7.3b</td>
<td>8.1b</td>
</tr>
<tr>
<td>Off-flavours</td>
<td>R</td>
<td>11.7bc</td>
<td>17.6bc</td>
<td>14.8abc</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>9.2</td>
<td>10.4</td>
<td>8.2</td>
</tr>
</tbody>
</table>

1 Rams (R), Castrates (C), October (O), November (N), January (J), March (M), April (A), Scottish Blackface (SB), Texel x Scottish Blackface (T × SB).

2 Mean values for attributes evaluated on a 100-point unstructured line scale (0 = low intensity; 100 = high intensity).

3 AxB interaction: scores of 3.8, 4.7, 5.8, 3.9, and 5.0 for October, November, January, March and April, respectively, in T × SB lambs; scores of 5.2, 5.3, 5.1, 3.1 and 2.7 for October, November, January, March and April, respectively, in SB lambs.

4 Different superscripts within rows differ significantly (P ≤ 0.05).

5 Means assigned different superscripts within columns differ significantly between genders (P ≤ 0.05).
Aroma, Animal Smell/Farm Smell, Woolly Aroma, Rancid Aroma, Manure/ Faecal Aroma, Sour Aroma, Sweaty Aroma, Soapy Aroma, Soapy Flavour, Rancid Flavour, Farmyard Flavour, Sour Flavour, Off-flavours, Soapy Aftertaste, Metallic Aftertaste (factor loadings 0.7–1 in PC1). SB castrates were associated with Intensity of Roast Meat Aroma, Buttery Aroma, Fatty Aroma, Intensity of Lamb Smell, Sweet Flavour, Tenderness, Juiciness, Intensity of Lamb Aftertaste and IMF. PC2 separated SB rams from T × SB castrates. Fattiness, Fatty Aftertaste, Intensity of Lamb Aroma Metabolic Aroma, pHu and two of the BCFAs, 4-methyl-nonenonic acid (4-MNA) and 4-ethyl-octanoic acid (4-EOA), had high positive loadings in PC2 and were broadly associated with SB rams. Aromatic/Herbal Aroma, Intensity of Roast Meat Flavour, Grassy Flavour, Chewiness, Stringiness, Stickiness, Dry Aftertaste and Astringent Aftertaste had high negative loadings in PC2. T × SB castrates were broadly associated with Intensity of Roast Meat Flavour and Grassy Flavour.

4. Discussion

4.1. Compositional analysis

In agreement with the results of other studies (Dransfield et al., 1990; Field, 1971; Kemp et al., 1970) the IMF content of the meat from rams was lower than that of castrates. The increased deposition of fat in castrates may be explained by the reduced rate of gain and feed efficacy that castration causes. Compared to castrates, the development of forequarter musculature in rams is also enhanced (Economides, 1983; Turton, 1969) which according to Seldeman et al. (1982) can be attributed to androgens which trigger muscle growth in the neck and shoulder muscles.

4.2. Sensory analysis

4.2.1. Gender effects

Many earlier studies on the effects of production factors, particularly castration, on lamb meat quality have focused on overall palatability (flavour, tenderness, juiciness) (Kemp et al., 1972; Lirette et al., 1984; Misock et al., 1976). The findings with regard to gender effects on sensory quality (particularly flavour) are equivocal with some studies showing differences in lamb from castrates vs rams (Field, 1984; Kemp et al., 1972; Misock et al., 1976) and others showing no difference (Dransfield et al., 1990; Kirton et al., 1982; Lloyd et al., 1980; Purchas et al., 1979). Studies showing a preference for lamb from rams over castrates are rare (Jeremiah et al., 1998). Few studies to date have used QDA to investigate the effect of production factors, such as castration, on lamb meat quality. Ames and Sutherland (1999) assessed the sensory quality of lamb (lean plus adipose tissue) using QDA and a trained panel of 9 female assessors using the following descriptors: Lamby, Meaty, Roast, Stale, Urine and Farmyard, where the latter three attributes were considered ‘unpleasant’. They found higher scores for all attributes in 30 week old rams compared to 30 week old castrates. In agreement with the findings of Ames and Sutherland (1999), our data showed significantly more Intense Lamb Aroma in rams compared to castrates although Intensity of Roast Meat Aroma and Roast Meat Flavour were higher in castrates. Our data include lambs at 28 weeks (the October group) and 35 weeks (the November group) of age, close to the age group used by Ames and Sutherland (1999) in their ram versus castrate comparison. Our results also concur with those of Ames and Sutherland (1999) in showing that lamb from rams scored higher (P < 0.05) than that from castrates for some attributes that may be viewed as undesirable or have negative connotations. These attributes include Animal Smell/Farm Smell (Ames and Sutherland, 1999; Erasmus et al., 2016), Woolly Aroma, Rancid Aroma (Tejeda et al., 2008), Sweaty Aroma (Wong et al., 1975), Manure/Faecal Aroma (Leighton et al., 2007) Rancid Flavour, Farmyard Flavour (also referred to as “Barnyard/ Kraal” (Erasmus et al., 2016) and Off-flavours. Spearman correlation confirmed positive (although weak) correlations (r = 0.17–0.59; P < 0.05) between all of these attributes (supplementary Table S2). The MAD statistic indicated the percentage of animals within gender and breed categories that exceeded an arbitrary cut-off for so called “undesirable” attributes (Table S5). It is notable that some castrates were among the animals exceeding the cut-off, suggesting that potential off-flavours and aromas in lamb samples are not confined to rams.

In contrast to our findings, and with sheep that included the age range in our study, Young et al. (2006) found no significant difference between rams and castrates in Sheepmeat Flavour or Barnyard Flavour of lean meat or in Sheepmeat odour or Barnyard odour of subcutaneous fat. However, panellists only evaluated the lean meat samples on the basis of the two attributes listed; it is also noteworthy that rams and castrates were not compared at individual time points (between 4 and 22 months of age) and that, in this context, rams had numerically higher scores than castrates for Barnyard Flavour at the older slaughter ages (19 and 22 months of age) (Young et al., 2006). In an earlier study Young et al. (2003) reported that the attributes Barnyard, Sheep, Oily were used more frequently for castrate lamb than ram lamb when raised on pasture, with a higher (P < 0.05) score for Barnyard in castrates compared to rams, slaughtered at 4.3 months but not at 7.6 months of age. The latter group fall within the age range of lambs in our study (6.4 (the October group) to 12.4 (the April group) months). The apparent difference in findings between our study and those of Young et al. (2006, 2003) could be due to different production factors (the animals used in the studies of Young et al. (2006, 2003) were entirely raised at pasture and of Romney breed), to differences in the sensitivity of the sensory panellists (QDA was used in our study but not in the studies of Young et al. (2006, 2003) or to cultural differences in preference for lamb (Ireland vs New Zealand).

In support of our findings showing significant effects of castration on flavour, data obtained from the analysis of BCFAs in subcutaneous fat from the same animals used in this study (Gravador et al., 2017) showed higher levels of 4-MNA in rams compared to castrates (0.05 vs 0.01 mg/g, respectively) (P < 0.001) and of 4-MAO (0.15 vs 0.13 mg/g, respectively) (P < 0.1). 4-MNA and 4-MAO (along with 4-EOA) have been associated with descriptors such as ‘sweaty’, ‘sour’, ‘wooly’, ‘soapy’ (Brennand et al., 1989; Jamora and Rhee, 1999; Wong et al., 1975) and with “sheep/sheepmeat” notes (Ha and Lindsay, 1991; Wong et al., 1975) and this may explain the higher sensory scores for Sweaty Aroma, Fattiness/ Greasiness and Intensity of Lamb Aroma for rams compared to castrates (Table 3). Furthermore, PCA (Supplementary Fig. S1) showed 4-MAO and 4-MNA closely clustered with Fattiness and Fatty Aftertaste. Of the two BCFAs, 4-MNA was more associated with Metallic Aroma/ Flavour and Aftertaste as well as with Rancid Aroma, Sweaty Aroma, Woolly Aroma and Manure/Faecal Aroma and more broadly associated with other less desirable attributes in the first quadrant. 4-EOA was more associated with Intensity of Lamb Aroma. It seems likely that the association of BCFAs with these attributes is causal since these compounds are known to have odour attributes aligned with these traits. In addition, it is clear that the three BCFAs were more closely associated with rams than with castrates (Supplementary Fig. S1), which may in part explain the difference detected among genders.

Although lamb from castrates had higher (P < 0.001) IMF than rams (Table 2), panellists perceived the texture of lamb rams to be higher (P < 0.05) in Fattiness/Greasiness and they scored lamb from rams slightly higher for Fatty/Greasy Aftertaste (P = 0.057) (Table 3). Fatty/Greasy Aftertaste was also positively, although weakly, correlated with Intensity of Lamb Aroma (P < 0.05, r = 0.18) (Supplementary Table S2). It may be the case that the presence of higher levels of BCFAs (notably 4-MAO and 4-MNA) in lamb from rams may have a more dominant effect than the level of IMF on the intensity of attributes such as Fatty/Greasy Aftertaste. In addition, analysis of muscle volatiles from the same animals used in this study (Gkarane et al., in preparation) showed that castrates (which scored higher for Intensity of Roast Meat Aroma and Intensity of Roast Meat Flavour) had a higher relative abundance of volatiles such as dimethylsulphide and pyrazines which are
associated with roast meat aroma (Belitz et al., 2004).

Some of the differences in sensory attributes between the two genders could be attributed to differences in pHu. Studies show that meat flavour can be influenced by pH (Calkins and Hodgen, 2007) and that ram lambs may have higher pH than castrates or female lambs (Bray, 1988; de Lima Júnior et al., 2016). Rams in our study had higher (P < 0.001) pHu (5.65) than castrates (5.52) (Table 2), which could be due to the higher physical activity of rams in general (associated with higher testosterone) leading to a reduction in muscle glycogen at slaughter (Pösö and Puolanne, 2005). Furthermore, in our study, there were positive correlations (although weak) between two attributes (Fattness/Greasiness and Off-flavours) and pH (r = 0.17 and r = 0.16, respectively; P = 0.019 and P = 0.023, respectively.) (supplementary Table S2).

Other possible explanations for the flavour differences among genders include the higher testosterone in rams giving rise to intestinal conditions that could favour bacteria or bacterial metabolic processes resulting either in higher levels of phenols, causing off-flavours (Ames and Sutherland, 1999), or in the formation of BCFAs (Sutherland and Ames, 1995). Fatty acid composition affects flavour (Wood et al., 2008) and there are indications that androgens can influence fat composition (Tichenor et al., 1970), although this is not accepted unequivocally (Crouse et al., 1972; Young et al., 2003). Schanbacher and Ford (1976) suggested that a threshold level of testosterone might be necessary to change the protein and lipid metabolism, which could ultimately affect flavour. Further research is required to confirm this possible linkage.

4.2.2. Age effects

Sink and Caporaso (1977) opined that it is “a generally accepted fact that animal flavour intensity increases with chronological age” while Jamora and Rhee (1999) stated that dislike of sheep meat increases with animal age. In the current study, there was no consistent effect of age on sensory attributes, as described above. Similar to our findings for the majority of attributes listed in Table 3, Jeremiah et al. (1998) did not detect a linear trend in flavour attributes with animal age, using four different age groups (3–6, 6–9, 9–12, 12–15 months). They concluded that lamb flavour is more likely correlated quadratically as opposed to linearly with chronological age and maturity, which concurs with the results of our study for most attributes.

A possible explanation for the apparent quadratic nature of the age effect on aroma attributes may be changes in photoperiod; its impact on meat tenderness (evaluated by Warner-Bratzler Shear Force values of muscle from the same animals used in this study were decreasing to 100%). Lambe et al. (2010) suggested that the presence of a significant age effect on aroma attributes may be changes in photoperiod; its impact on the sensory attributes of lamb, Sutherland and Ames (1996) found that levels of 4-MOA and 4-MNA increased with age and were greater (P < 0.05) in rams slaughtered at 30 weeks of age compared to 12 week old rams (before sexual maturity). However, Young et al. (2006) analysing lean and fat (subcutaneous and perirenal) of rams and castrates slaughtered at 4, 7, 10, 13, 17, 20 and 23 months, found no clear effect of age on Barnyard Odour (in fat) and Barnyard Flavour (in lean). Another factor that could have influenced any age effects in our study is month to month variation in the composition of the pasture that lambs received prior to housing and concentrate feeding. The content of carbohydrates, glucosinolates, and crude protein, as well as their digestibility between seasons, may vary within pasture species and type, thereby affecting the animal’s deposition of muscle, fat and glycogen, as well as absorption of nutrients, and ultimately affecting flavour (Watkins et al., 2013).

The pHu may have contributed to the significant age effect on texture (Tenderness, Chewiness, Stringiness/Fibrousness) being higher in January lamb compared to October and November lamb. Water binding capacity and the tenderising effect of the proteolytic calpains is known to be higher at higher pHu (Huff-Lonergan and Lonergan, 2005; Watanabe et al., 1996). Although pHu was not different in lambs slaughtered in March and April (compared to January) an increase in total collagen and decrease in collagen solubility in the older lambs (Weston et al., 2002) may explain the decrease in tenderness in the later months. In agreement with the sensory data, Warner-Bratzler shear force values of muscle from the same animals used in this study were lower in January lambs compared to the other months (although statistically significant only when compared with the April lamb) (Claffey et al., 2017).

4.2.3. Breed effects

Among the factors that may explain the breed differences in the sensory attributes of the lamb (higher scores for Intensity of Lamb Aroma, Intensity of Lamb Flavour, Intensity of Lamb Aftertaste, Tenderness and Juiciness and lower scores for Chewiness, Off-flavours, Dry Aftertaste in SB) is the difference in IMF (mean values of 3.3 and 2.5% for SB and T × SB, respectively) (Table 2). These differences in IMF also coincide with the higher scores (approaching significance) for Fatty Aroma (P = 0.081) and Fattness/Greasiness (P = 0.068) in SB lambs. Similarly, Hopkins et al. (2006) found that sensory characteristics (Tenderness, Flavour, Juiciness and Overall Liking) declined when IMF declined. Navajas et al. (2008) reported higher Tenderness and stronger Flavour (and Overall Liking) for SB compared to Texel lambs, while Texel lambs exhibited higher muscularity. Although, the Texel lambs used in our study were not purebred, it seems that the Texel genetics may contribute to lower scores for Tenderness. Carson et al. (1999) reported a quadratic relationship between meat tenderness (evaluated by Warner-Bratzler shear force) and the proportion of Texel genes (0, 50, 75 and 100%) in lambs, with tenderness increasing from 0 to 50% then decreasing to 100%. Lambe et al. (2010) suggested that the presence of a qualitative trait locus (QTL) on chromosome 18 in Texel sheep could explain the significant loin toughness that was found in male (vs female) lambs and the low IMF (< 2%) that most of the lambs (with QTL) had. The PCA (Fig. 1) revealed a negative correlation between IMF and higher scores in less desirable attributes closer to the winter solstice. Mush et al. (2008) identified age at slaughter along with diet as controllable factors for preventing ram odour. The authors, using a trained sensory panel and with a hypothesis that ram flavour would be strongest during the mating period (mid-November to mid-December, when the animals were aged 6–7 months), found stronger ram taste in ram lambs slaughtered around this period, an effect linked with their sexual maturity that was not detected when meat from ewes was tasted. Ames and Sutherland (1999) found higher scores for Lamby, Meaty, Roast, Stale, Urine and Farmyard in 30 week old rams compared to 12 week old rams. In castrates, scores for Lamby, Meaty and Roast descriptors increased with age (12 vs 30 weeks at slaughter). In further support of a possible age effect on the sensory attributes of lamb, Sutherland and Ames (1996) found that levels of 4-MOA and 4-MNA increased with age and were greater (P < 0.05) in rams slaughtered at 30 weeks of age compared to 12 week old rams (before sexual maturity). However, Young et al. (2006) analysing lean and fat (subcutaneous and perirenal) of rams and castrates slaughtered at 4, 7, 10, 13, 17, 20 and 23 months, found no clear effect of age on Barnyard Odour (in fat) and Barnyard Flavour (in lean). Another factor that could have influenced any age effects in our study is month to month variation in the composition of the pasture that lambs received prior to housing and concentrate feeding. The content of carbohydrates, glucosinolates, and crude protein, as well as their digestibility between seasons, may vary within pasture species and type, thereby affecting the animal’s deposition of muscle, fat and glycogen, as well as absorption of nutrients, and ultimately affecting flavour (Watkins et al., 2013).

The pHu may have contributed to the significant age effect on texture (Tenderness, Chewiness, Stringiness/Fibrousness) being higher in January lamb compared to October and November lamb. Water binding capacity and the tenderising effect of the proteolytic calpains is known to be higher at higher pHu (Huff-Lonergan and Lonergan, 2005; Watanabe et al., 1996). Although pHu was not different in lambs slaughtered in March and April (compared to January) an increase in total collagen and decrease in collagen solubility in the older lambs (Weston et al., 2002) may explain the decrease in tenderness in the later months. In agreement with the sensory data, Warner-Bratzler shear force values of muscle from the same animals used in this study were lower in January lambs compared to the other months (although statistically significant only when compared with the April lamb) (Claffey et al., 2017).
Cheviness and Dry Aftetaste (the last two being closely correlated). As Tenderness and Juiciness have a strong influence on meat acceptability (Kooohmaraei et al., 2002), it may be that the lower scorings for these attributes in $T \times SB$ animals affects the overall perception negatively. While the MAD statistic indicated that a higher percentage of $T \times SB$ than SB lambs were considered to have undesirable attributes, it is noteworthy that SB lambs were also among those with undesirable attributes.

The gender \times breed interaction for Soapy Aroma may be due to differences in content of the aldehyde nonanal which has a soapy aroma. Volatile analysis of muscle samples from the current study (Gkarane et al. in preparation) showed that nonanal was higher in $T \times SB$ rams compared to castrates but not in SB rams compared to castrates.

5. Conclusion

The data indicate that lamb from rams scores lower for Intensity of Roast Aroma and Flavour and higher for Intensity of Lamb Aroma although differences are often small numerically. Rams also score higher for undesirable aroma and flavour attributes. In both instances the aroma and flavour differences may be due to the greater accumulation of compounds typically associated with lamb meat flavour and off-flavours in rams, such as BCFAs. Age and gender \times age effects suggest that differences in sensory traits between rams and castrates may be influenced by age- and maturity-dependent differences in hormonal activity at particular periods of the year. The $T \times SB$ score lower for Intensity of Lamb Aroma, Flavour and Aftetaste, Tenderness, Juiciness and higher for Off-flavours, possibly related to compositional differences between breeds particularly IMF. Overall, there are few gender \times breed and age \times breed interactions suggesting that the gender and age effects observed are applicable across different breed types. It remains to be established whether or not the differences in sensory characteristics detected by a trained panel in this study would be detected by consumers.

Acknowledgements

The financial support of the Food Institutional Research Measure of the Irish Department of Agriculture, Food and the Marine (project 11/SP/310) and of the Teagasc Walsh Fellowship programme (award 2013058) is gratefully acknowledged. The authors also thank colleagues at the Agri-Food and Biosciences Institute for their advice on sensory panel training and at Teagasc, Food Research Centre for their assistance with the sensory analysis.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.smallrumres.2017.10.011.

References

