Shared and non-shared sIgA-coated and uncoated bacteria in intestine of mother-infant pairs

Mengfan Ding
Jiangnan University

Haiqin Chen
Jiangnan University

Renqiang Yu
The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University

R. Paul Ross
University College Cork

Catherine Stanton
Teagasc Food Research Centre

Hao Zhang
Jiangnan University

Bo Yang (✉ bo.yang@jiangnan.edu.cn)
Jiangnan University

Wei Chen
Jiangnan University

Research Article

Keywords:

Posted Date: April 20th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1560082/v1

License: ☺️ ☜️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

The infant gut microbiota is critical for promoting and maintaining early life health. Bacteria coated by secretory immunoglobulin A (sIgA) may help commensal bacteria colonize the gastrointestinal tract. The study aimed to analyze the composition of sIgA-coated and sIgA-uncoated bacterial communities at genus level, and lactobacilli and bifidobacterial communities at species level in human breast milk (HBM), infant, and maternal feces.

Results

Eleven pregnant women were recruited successfully. HBM, infant feces during colostrum, transition, and mature stages, and maternal feces within the mature stage were collected. sIgA-coated and sIgA-uncoated bacteria were separated with magnetic-activated cell sorting. Then 16S rRNA sequencing, bifidobacterial groEL gene sequencing, and lactobacilli groEL gene sequencing were performed to analyze the bacterial community. The richness of sIgA-coated bacteria was significantly higher than that of sIgA-uncoated bacteria in HBM. PCoA revealed that the compositions of sIgA-coated and sIgA-uncoated bacteria were different among HBM, infant and maternal feces. The dominant sIgA-coated bacteria in those samples were *Escherichia/shigella* and the dominant sIgA-uncoated bacteria was *Pseudomonas*. Higher relative abundance of sIgA-uncoated *Bifidobacterium* was found in the three lactation stages in infant feces compared to the corresponding HBM, and a higher relative abundance of sIgA-uncoated *Faecalibacterium* was found in maternal feces compared to HBM and infant feces. For the bifidobacterial community, PCoA analysis revealed a significantly different *Bifidobacterium* composition only in the sIgA-uncoated segments of infant feces and maternal feces. sIgA-coated and sIgA-uncoated *B. longum* subsp. *infantis* and *B. pseudocatenulatum* was dominant in infant feces and maternal feces, respectively. Additionally, the relative abundance of sIgA-uncoated *B. longum* subsp. *infantis* was significantly higher in infant feces compared to that in maternal feces. For the *Lactobacillus* community, the composition was significantly different in infant and maternal feces, while at species level, *L. paragasseri* and *L. mucosae* were dominant in infant and maternal feces, respectively.

Conclusion

HBM, infant, and maternal feces showed distinct diversity and composition of both sIgA-coated and sIgA-uncoated bacteria at genus level. Infant and maternal feces showed similar diversity and similar composition of *Bifidobacterium* at species level. The same *Bifidobacterium* species could be detected both in sIgA-coated and sIgA-uncoated form.

Introduction
The composition of the infant gut microbiota is a key factor influencing host immune system development and maturity [1]. Research to date indicates that the gut microbiota in early life is derived mainly from the maternal gastrointestinal tract and breast milk [2, 3]. Certain bacteria in the intestine can become coated with secretory immunoglobulin A (sIgA) and after binding to sIgA, microbiota in the maternal intestine may specifically adhere to microfold cells (M cells) [4], which are then transported from the intestinal lumen to sub-epithelial dendritic cells and can enter the mammary gland through the entero-mammary pathway, and colonize the infant’s gut through consuming breast milk [6]. Bacteria coated by sIgA may have a colonization advantage within the gut mucosal surface by excluding exogenous competitors [7].

The structure and dynamics of sIgA-coated bacteria in the gut can be a biomarker to predict the occurrence of disease [8, 9]. For example, infants suffering from necrotizing enterocolitis showed a lower relative abundance of sIgA-coated bacteria such as *Bifidobacteriaceae* and *Prevotellaceae*, and a higher relative abundance of sIgA-coated *Enterobacteriaceae* [10]. In adults with inflammatory bowel disease, the ratio of sIgA-coated bacteria in feces was increased compared with healthy controls [11]. Additionally, at 12 months of age, the relative abundances of sIgA-coated bacteria in children with allergy symptoms, particularly asthma, were lower than in healthy children: *Faecalibacterium* and *Bacteroides* were in sIgA-coated form in healthy children at 1-month and 12-months, whereas these two genera were uncoated in children with allergic manifestations [12]. Therefore, it is necessary to summarize the composition of sIgA-coated bacteria in the gastrointestinal tract of healthy infants for disease prediction.

For the detection of sIgA-coated bacteria, the methods mainly used include flow cytometry, magnetic-activated cell sorting (MACS), and a combination of the two approaches to improve the accuracy [9]. Previous studies have already reported that *Bifidobacterium*, *Staphylococcus*, *Lactobacillus*, *Escherichia/Shigella*, *Clostridium*, and *Bacteroides* can be detected in the sIgA-coated form in the infant intestine from 1-month to 12-month-old [12, 14, 15]. In the adult intestine, *Actinomyces*, *Bifidobacterium*, *Dorea*, *Ruminococcus*, *Akkermansia*, *Bacteroides*, *Roseburia*, *Paraprevotella*, and *Dorea* were detected in the sIgA-coated form [9, 16, 17]. However, little research has focused on the profile of sIgA-coated bacteria in human breast milk. More than 40% of the bacteria in human milk have been coated with sIgA according to one report [18] and another study found that *Bifidobacterium*, *Lactobacillus*, and *Streptococcus* were detected in the sIgA-coated form in human breast milk [19]. In addition, the existing research has mainly focused on the composition of sIgA-coated bacteria and did not compare the sIgA-coated bacteria and sIgA-uncoated bacteria at the genus level and species level of *Bifidobacterium* and *Lactobacillus*.

Hence, the current study aimed to analyze the composition of sIgA-coated bacteria and sIgA-uncoated bacteria in breast milk, infant feces, and maternal feces at genus level and at species level among *Bifidobacterium* and *Lactobacillus*. 16S rRNA sequencing, *Bifidobacterium groEL* sequencing, and *Lactobacillus groEL* sequencing, coupled with MACS, were used to separate and analyze the composition of sIgA-coated and uncoated bacteria.
Methods

Volunteer recruitment and sample collection

Eleven pregnant women were recruited who delivered at the Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University from February 2020 to April 2021 (Ethics number: 2020-01-0302-03). All infants were full-term (> 38 weeks), vaginally delivered, and breastfed exclusively during the whole sampling collection period. Sample collection included human breast milk (HBM) (n = 33), infant feces (n = 33), and maternal feces (n = 11). HBM samples were collected according to the time after delivery: colostrum (days 1–7), transitional milk (days 8–14), and mature milk (days 16 onwards). The collection time of infant feces was the same as that for breast milk collection, and maternal feces were only collected during the mature milk period. Feces and breast milk sample collection was standardized for all subjects [20]. Samples were stored at -80 °C after collection for further analysis.

Enrichment of sIgA-coated bacteria through magnetic-activated cell sorting

Milk samples were divided into two parts, one (5 mL) for DNA extraction directly and the other (10 mL) for the enrichment of sIgA-coated bacteria. 20 mg fecal samples were used for sIgA-coated bacteria and 50 mg for DNA extraction. Enrichment of sIgA-coated bacteria was performed as previously described [21], then sIgA-coated bacteria and sIgA-uncoated bacteria were collected for further DNA extraction.

DNA extraction and 16S rRNA amplification

The FastDNA Spin Kit for Feces (MP Biomedicals, LLC, Irvine, CA) was used for DNA extraction. The PCR reaction was performed as previously described [22]. Bacterial sediments of HBM, infant feces, and maternal feces were deposited in Lysing Each matrix E tube was filled with 825 µL sodium phosphate buffer and 275 µL PLS dissolving solution and vortexed for 10–15 s before centrifugation at 14000 g for 5 min and discarding the supernatant. Following that, 978 µL sodium phosphate buffer and 122 µL MT buffer were added, and the mixture was agitated and then broken for 30 seconds (35 times) at 70 HZ on the high-throughput tissue grinder. The Lysing Matrix E tube was then centrifuged for 10 minutes at 14000 g. Finally, bacterial DNA was extracted from the supernatant using the FastDNA Spin Kit for Feces. PCR amplification for the V3-V4 region of the 16S rRNA gene was conducted as previously described [23]. The primers were as follows: 341F:5’-CCT AYG GGRBGCASCAG-3’ and 806R:5’-GGA CTA CNNGGG TAT CTAAT-3’. Negative controls were included using deionized sterile water as template.

Bifidobacteria and lactobacilli groEL gene amplification

The procedure for the amplification of the Bifidobacterium and Lactobacillus groEL genes was the same as for the 16S RNA gene, but specific primer pairs for bifidobacterial and lactobacilli groEL genes were used [24]. The Bifidobacterium groEL gene was amplified using the primers Bif-groEL-F (5’-
TCCGATTACGAYGYGAGAAGCT-3') / Bif-groEL-R (5'-CSG CYTCGGTSGTCAGGA-ACA-G-3'), and the
Lactobacillus gene was amplified using primers Lac-groEL-F(5'-GCYGGTG-CWAACCCNGTTGG-3') / Lac-
groEL-R (AANGTNCCVCVATC-TTGTT-3') to differentiate the species. Negative controls using deionized
sterile water as the template were included.

Illumina MiSeq Sequencing

The PCR products (465 bp for the 16S rRNA V3-V4 region and 480 bp for the *groEL* genes) were extracted
from a 1.5 percent agarose gel and purified using the QIAquick Gel Extraction Kit. (Biomiga, Hangzhou,
China) and quantified with the QubitTM dsDNA BR Assay Kit (Thermofisher, MA, U.S.A) according to the
manufacturer's instructions. The TruSeq DNA LT Sample Preparation Kit (Illumina, SD, U.S.A) was used to
build libraries of the 16s rRNA gene, and the *Bifidobacterium*, and *Lactobacillus groEL* genes. These were
then sequenced on an Illumina Miseq sequencer using the MiSeq v3 Reagent Kit (Illumina, SD, U.S.A)
(600 cycles-PE) according to the manufacturer's instructions.

Statistical analysis

To analyze 16S rRNA data, the QIIME 2 data analysis program was employed. Samples were identified by
the barcodes attached to 341F, Bif-*groEL*-F, and Lac-*groEL*-F, respectively. The forward and reverse reads
were merged and allocated based on the barcode which was cut off before being aligned with the SILVA
database. Sequences were grouped into OTUs after removing chimeric sequences. Sequence similarity
greater than 97% was classified as an OTU. Alpha diversity was calculated in QIIME2 and the Shannon
index was used to indicate the diversity, and Chao1 was used to indicate the richness. Beta diversity was
calculated using PCoA based on the distance between the matrix Brary-Curtis. T-test and ANOVA were
used to calculate the difference(s) between two groups and more than two groups, respectively.

Results

**Diversity, composition and differences of total bacterial communities among HBM, maternal and infant
feces**

Eleven mother-infant pairs were recruited. And seventy-seven samples including HBM (n = 33), maternal
feces (n = 33), and infant feces (n = 11) were collected. All the samples underwent 16S rRNA amplicon
sequencing. Chao1 and Shannon indexes were used to assess the richness and diversity of bacteria,
respectively (Fig. S1A). Maternal feces (MF) showed significantly higher richness compared with all the
three stages of infant feces (IC, the stage corresponding to colostrum; IT, the stage corresponding to
transition milk; IM, the stage corresponding to mature milk; P < 0.01 for all) and was only significantly
higher than mature milk (BM, P < 0.01) but not transition milk (BT) or colostrum milk (BC). Additionally,
the richness of those three stages of infant feces (IC, IT, IM) was significantly lower than the
corresponding human breast milk (BC, colostrum; BT, transitional milk; P < 0.05 for all). Similar to the
richness of bacteria, the diversity of the MF group was significantly higher than that of IC (P < 0.05), IT (P
< 0.01), IM (P < 0.01), and also significantly higher than that of BC, BT, and BM (P < 0.01). Whereas no
significant difference in richness was found among infant feces and human breast milk at any stage
Principal coordinate analysis (PCoA) was used to represent the beta diversity based on Bray-Curtis distance matrices. The composition of bacteria in HBM, maternal feces, and infant feces was significantly different in the absence of stage (Fig. S1B, P = 0.001). Additionally, breast milk and infants’ feces at the same stage showed a different profile of microbiota (Fig. S1C, P = 0.001).

Bacteria in HBM mainly consisted of *Streptococcus* (BC, 17.2%; BT, 17.0%; BM, 11.6%), *Staphylococcus* (BC, 18.1%; BT, 16.0%; BM, 4.4%), *Acinetobacter* (BC, 2.2%; BT, 18.3%; BM, 14.8%), and *Bifidobacterium* (BC, 11.5%; BT, 9.3%; BM, 18.3%; Fig. S2). *Bifidobacterium* became dominant in the mature milk stage. The microbiota in infants’ feces mainly consisted of *Bifidobacterium* (IC, 43.9%; IT, 54.8%; IM, 51.0%) regardless of stages, whereas *Bacteroides* was dominant in maternal feces (25%, Fig. S1D).

Bidobacterium in infant feces was significantly higher compared with that in HBM (BC, P < 0.05; BT, P < 0.01; BM, P < 0.01) and maternal feces (IC vs. MF, P < 0.05; IT vs. MF, P < 0.01; IM vs. MF, P < 0.01; Fig. S1E). The relative abundances of *Bacteroides*, *Blautia*, and *Faecalibacterium* were significantly higher in maternal feces compared to HBM and infant feces regardless of the stage (P < 0.01, Fig. S1E). Meanwhile, the *Blautia* of HBM in the colostrum and transition milk stages was significantly higher than that in infant's feces of the same stage (Fig. S1E). However, the relative abundances of *Staphylococcus* and *Streptococcus* in the BC and BT groups were significantly higher compared to those in maternal feces (P < 0.05). And *Streptococcus* levels in BC and BM groups were significantly higher than those of the corresponding stage of infant feces (P < 0.05, Fig. S1E). Furthermore, the relative abundance of *Pseudomonas* in BC and BT groups was significantly higher than that of infant feces (P < 0.01) whereas *Veillonella* was significantly lower in BM than that of IM (P < 0.01, Fig. S1E).

slgA-coated and slgA-uncoated bacterial communities within the total bacterial communities of HBM, maternal feces and infant feces

HBM, infant feces, and maternal feces were used to enrich the slgA-coated and slgA-uncoated bacteria. slgA-coated bacteria did not significantly differ in terms of diversity and richness among HBM, maternal feces, and infant feces except for the richness of HBM and infant feces of the transitional stage (Fig. 1A). The composition of slgA-coated bacteria was significantly different among HBM, maternal feces, and infant feces (P = 0.017), whereas HBM and infant feces at the same stages only had a significant difference in the composition of slgA-coated bacteria at the mature milk stage (P = 0.007, Fig. 1B). The dominant bacterial compositions in slgA-coated and slgA-uncoated communities were significantly different from total bacteria. slgA-coated *Escherichia-Shigella* was dominant in HBM, maternal feces, and infant feces, accounting for approximately 50% (BCI, 42.9%; BTI, 24.8%; BMI, 27.9%; ICI, 56.6%; ITI, 59.6%; IMI, 59.4%; MFI, 46.6%); in contrast, slgA-coated *Bifidobacterium* only accounted for 9.3%, 15.7% and 15.8% in HBM (BCI, BTI, BMI, respectively), 11.8%, 12.5% and 14.1% in infant feces (ICI, ITI, IMI, respectively), and 3.5% in maternal feces (MFI, Fig. 1C). Additionally, no significant differences were found between slgA-coated bacteria among the three stages of HBM, maternal feces, and infant feces.

The richness of slgA-uncoated bacteria in maternal feces was significantly higher than HBM and infant feces regardless of the stage (P < 0.01, Fig. 2A) whereas no significant differences in diversity were
observed except for colostrum and the corresponding infant feces, where the latter was significantly lower (P < 0.01, Fig. 2A). Similar to slgA-coated bacteria, the composition of slgA-uncoated bacteria was significantly different among HBM, maternal feces, and infant feces (P = 0.001, Fig. 2B). In contrast to slgA-coated bacteria, HBM only showed a significantly different composition of slgA-uncoated bacteria within the colostrum stage (P = 0.005, Fig. 2B). slgA-uncoated bacteria were mainly dominated by *Pseudomonas* in HBM (BCNI, 49.0%; BTNI, 61.5%; BMNI, 56.5%), maternal feces (MFNI, 48.8%) and infant feces (ICNI, 50.5%, ITNI, 59.8%; IMNI, 48.8%). In addition, slgA-uncoated *Rheinheimera, Bifidobacterium* and *Bacteroides* were the second dominant genus in HBM (BCNI, 25.9%; BTNI, 14.6%; BMNI, 26.5%), infant feces (ICNI, 21.0%, ITNI, 17.2%; IMNI, 19.8%) and maternal feces (MFNI, 11.4%), respectively (Fig. 2C). slgA-uncoated *Bifidobacterium* revealed a higher relative abundance in three stages of infant feces compared to the corresponding HBM (P < 0.01, Fig. 2D). Maternal feces showed a higher relative abundance of slgA-uncoated *Faecalibacterium* compared to three stages of HBM and infant feces (P < 0.001, Fig. 2D) and showed a higher relative abundance of slgA-uncoated *Bacteroides* compared to HBM (P < 0.01, Fig. 2D). Interestingly, the relative abundance of slgA-uncoated *Streptococcus* in infant feces of colostrum stage (ICNI) was significantly higher compared with colostrum (BCNI, P < 0.05) and maternal feces (MFNI, P < 0.05) and the relative abundance of slgA-uncoated *Staphylococcus* in infant feces was significantly higher than that of MFNI (P < 0.01, Fig. 2D). The relative abundance of slgA-uncoated *Lactobacillus* only showed a significant difference between HBM and infant feces within the mature stage, being greater in infant feces (P < 0.05, Fig. 2D) and slgA-uncoated *Stenotrophomonas* was significantly higher in colostrum compared to the corresponding infant feces (P < 0.05, Fig. 2D).

Interestingly, although the dominant genus of slgA-coated and uncoated bacteria in HBM, maternal feces and infant feces was different, this did not result in a significant difference in the abundance of the genus.

The alpha diversity was compared between slgA-coated and slgA-uncoated bacteria of each sample. Significant lower richness was found in slgA-uncoated bacteria of the three stages of HBM compared with slgA-coated bacteria (P < 0.05, P < 0.001, P < 0.05, Fig. 3). For infant feces, the richness and diversity of slgA-uncoated bacteria in the colostrum stage were significantly lower than that of slgA-coated bacteria (P < 0.05, Fig. 3A and B). Additionally, the compositions of slgA-coated and uncoated bacteria were significantly different in HBM (BCI vs. BCNI, P = 0.005; BTI vs. BTNI, P = 0.007; BMI vs. BMI, P = 0.001; Fig. 3C), infant feces (ICI vs. ICNI, P = 0.008; ITI vs. ITNI, P = 0.008; IMI vs. IMNI, P = 0.001; Fig. 3D) and maternal feces (MFI vs. MFNI, P = 0.001; Fig. 3E).

Composition and difference of total, slgA-coated and slgA-uncoated bifidobacterial community among HBM, maternal feces and infant feces

Total bifidobacterial composition was analyzed in HBM, infant feces, and maternal feces, whereas slgA-coated and slgA-uncoated bifidobacteria communities were only analyzed in infant feces and maternal feces due to low relative abundance in HBM. For infant feces, eight infant feces of colostrum and transition stage, respectively, and six infant feces of mature milk stage were amplified successfully. All maternal feces were amplified successfully.
The total bifidobacteria of HBM, maternal feces and infant feces did not show significant differences in richness (Fig. S2A). However, the diversity of *Bifidobacterium* in the three stages of infant feces was lower than maternal feces (IC vs. MF, P < 0.05; IT vs. MF, P < 0.01; IM vs. MF, P < 0.05) and the corresponding stage of HBM (P < 0.05, Fig. S2A). For slgA-coated and uncoated bifidobacteria, no significant differences were found between maternal and infant feces in richness or diversity (Fig. S2C and S2E). We did not amplify *Bifidobacterium* in HBM due to its low relative abundance at the genus level. Similar to total bacteria, the bifidobacterial compositions in HBM, maternal feces and infant feces were significantly different (P = 0.001, Fig. S2B). Meanwhile, the composition of *Bifidobacterium* in breast milk and infant feces at the same stage was significantly different (P = 0.001 for three stages, Fig. S2B). The composition of slgA-coated *Bifidobacterium* was similar between maternal and infant feces (P = 0.573), whereas slgA-uncoated bifidobacterial composition was significantly different between maternal and infant feces (P = 0.004, Fig. S2D and S2F).

Thirteen bifidobacterial species were detected in our study (Fig. 4A). *B. pseudocatenulatum* was dominant in HBM (BC, 53.6%; BT, 50.4%; BM, 43.3%), while *B. longum* subsp. *infantis* was dominant in maternal and infant feces (MF, 44.8%; IC, 85.9%; IT, 92.8%; IM, 93.6%, Fig. 4A). Similar to total bifidobacteria, slgA-coated and slgA-uncoated *B. longum* subsp. *infantis* was dominant both in maternal and infant feces (MFI, 45.3%; ICI, 56.8%; ITI, 59.1%; IMI, 54.3%; Fig. 4A, MFNI, 54.2%; ICNI, 74.4%; ITNI, 84.0%; IMNI, 86.9%; Fig. 4A).

We then compared the difference of total, slgA-coated and uncoated bifidobacteria among HBM, maternal feces, and infant feces. Maternal feces showed a significantly lower abundance of *B. animalis* subsp. *lactis* and *B. longum* subsp. *infantis* compared to that of HBM (BC, BT and BM, P < 0.05, Fig. 4B) and infant feces (IC, IT, IM, P < 0.01), respectively. And maternal feces showed a higher relative abundance of *B. longum* subsp. *longum* compared to HBM (BC, BT, BM, P < 0.05) and infant feces within the mature stage (IM, P < 0.01). Additionally, the relative abundance of *B. pseudocatenulatum* was higher in maternal feces compared to that in infant feces (IC, P < 0.05; IT, P < 0.01; IM, P < 0.01), but lower than that in colostrum (BC, P < 0.05). Furthermore, when comparing infant feces with the same stage of HBM from their mother, a higher relative abundance of *B. animalis* subsp. *lactis* and *B. bifidum* and lower *B. pseudocatenulatum* and *B. ruminantium* was found in maternal feces of colostrum and transitional stage compared to HBM (BC vs. IC, P < 0.05, P < 0.01, P < 0.01, P < 0.05; BT vs. IT, P < 0.01, P < 0.05, P < 0.01, P < 0.01). Three stages of the infant showed lower relative abundance *B. breve* and higher relative abundance of *B. longum* subsp. *infantis* compared to corresponding HBM (BC vs. IC, P < 0.01, P < 0.01; BT vs. IT, P < 0.05, P < 0.01; BM vs. IM, P < 0.01, P < 0.01; Fig. 4B).

For slgA-coated or slgA-uncoated bifidobacteria, HBM samples were not amplified successfully due to its low relative abundance, however infant and maternal feces were amplified successfully for partial samples (ICI, n = 10, ICNI, n = 11; ITI, n = 9, ITNI, n = 10; IMI, n = 7, IMNI, n = 10; MF, n = 11, MFNI, n = 11). SlgA-coated *B. ruminantium* showed a higher relative abundance in maternal feces compared to that in infant feces (P < 0.05, Fig. 4C). And for slgA-uncoated bifidobacteria, a higher relative abundance of *B. longum* subsp. *infantis* and a lower relative abundance of *B. longum* subsp. *longum* were found in infant
feces of transitional (P < 0.01) and mature stages (P < 0.01) compared to maternal faeces. Indeed, uncoated B. longum subsp. longum in infant feces at all stages was significantly lower than that in maternal feces (ICNI vs. MFNI, P < 0.05; ITNI vs. MFNI, P < 0.01; IMNI vs. MFNI, P < 0.05, Fig. 4C).

Then we compared the distribution of slgA-coated and uncoated bifidobacteria in a single sample of infant feces and maternal feces. In most of the samples from infants and mothers, B. longum subsp. infantis was the main coated and uncoated Bifidobacterium species, while B. pseudocatenulatum was the main coated and uncoated Bifidobacterium species in a small number of samples (Fig. 5). Interestingly, the dominant slgA-coated Bifidobacterium in infant feces at different stages showed stage-dependence. For example, in the feces from infant WXI10 and WXI11, slgA-coated B. pseudocatenulatum was dominant in the colostrum and mature milk stage, while in the transitional stage, the dominant slgA-coated Bifidobacterium species turned to B. longum subsp. infantis (Fig. 5A). Furthermore, the slgA-coated bifidobacteria in the infant feces was also different from their maternal feces in part of the stage (Fig. 5). In addition, similar results were found for slgA-uncoated bifidobacteria in both maternal feces and infant feces (Fig. 5).

Alpha and Beta diversity of the total Lactobacillus community in maternal feces and infant feces

The relative abundance of Lactobacillus in HBM (BC, BT, BM) was 2.7%, 0.5%, 0.1%, respectively, which proved restrictive for further lactobacilli groEL sequencing. For fecal samples, we successfully amplified total Lactobacillus in a subset of maternal and infant feces successfully (IC, n = 5; IT, n = 8; IM, n = 5; MF, n = 5), then the alpha and beta diversity of total Lactobacillus was evaluated. No significant difference was found in alpha diversity between the different stages of infant feces nor between maternal and infant feces (Fig. S3A). However, the composition of Lactobacillus among the three stages of infant feces and maternal feces differed significantly (P = 0.002, Fig. S3B).

We obtained thirteen Lactobacillus species in total, while a relative abundance of lower than 0.001% or only detected in a single sample was classified as ‘Lactobacillus other.’ L. paragasseri was dominant in infant feces in each stage (IC, 45.8%; IT, 81.0%; IM, 63.6%), whereas L. mucosae was dominant in maternal feces (MF, 35.5%) (Fig. S3C).

Infant feces in the colostrum stage showed a lower relative abundance of L. mucosae compared to maternal feces (P < 0.01) and those infant feces within transitional and mature stages showed a higher relative abundance of L. paragasseri (IT vs. MF, 0.01; TM vs. MF, P = 0.01; Fig. S3D) and L. crispatus (IT vs. MF, 0.05; TM vs. MF, P = 0.01; Fig. S3D) compared to maternal feces. In addition, the relative abundance of L. salivarius was higher in maternal feces compared to all the three stages of infant feces (IC vs. MF, P < 0.05; IT vs. MF, 0.01; TM vs. MF, P = 0.01; Fig. S3D).

Discussion

This study compared the composition of bacteria at genus level, and bifidobacterial and Lactobacillus communities at species level in HBM, maternal feces, and infant feces. Furthermore, the study also
investigated slgA-coated and uncoated bacteria at genus level and *Bifidobacterium* at species level in the same sample set. Samples from different niches exhibited distinct microbiota profiles in total bacteria, bifidobacterial community, and *Lactobacillus* community, as well as in the slgA-coated and uncoated bacteria and bifidobacteria. With regard to total bacteria, maternal fecal microbiota showed higher alpha diversity and unique bacterial structure compared to that in HBM and infant feces in line with previous research [25]. Meanwhile, infant feces showed lower richness and diversity compared to that in the same stage of HBM except for the diversity of the colostrum stage feces that was higher than its HBM counterpart, which may indicate that colostrum consisted of bacteria with low relative abundance. In addition, although a part of infant gut microbiota came from breast milk, the two types of samples showed different microbial compositions in all three stages similar to previous reports [2, 26]. HBM was dominated by *Streptococcus* and *Staphylococcus* within one month of lactation stage which may mainly come from oral reflux [27] and breast skin contamination [28]. And in the mature milk stage, this dominant position was replaced by *Bifidobacterium*. It is well-known that the gut microbiota of breast-fed infants is dominated by *Bifidobacterium* [29] due to its capacity to metabolize human milk oligosaccharides, and this dominance can last for up to half a year after weaning [30]. *Bacteroides* occupies the position of dominant bacterium in the adult gut and this reshuffling coincides with the introduction of solid food to the infant [31]. Additionally, *Streptococcus* was detected in the infant fecal samples but is known to decrease with age [32, 33]. This is consistent with our results of microbial composition in the maternal intestine.

This study also analyzed the composition of the bifidobacterial and lactobacilli communities at the species levels in HBM, maternal feces, and infant feces based on the specific groEL genes. Consistent with previous research [34], *B. longum* subsp. *infantis* was the most common *Bifidobacterium* species in infant feces, while HBM and maternal feces were mainly composed of *B. pseudocatenulatum* [34, 35]. In contrast, a previous study reported that *B. longum* was common in human breastmilk based on RT-PCR [36]. The profile of *Bifidobacterium* in infant feces and maternal feces was relatively scattered, and not concentrated to certain types of *Bifidobacterium* [37].

Lactobacillus, which is also necessary for milk digestion, is a commensal microorganism in the infant intestine. It does, however, grow increasingly plentiful after infancy, and its relative abundance declines with age, possibly due to competition with endogenous lactose digesting enzymes in infants [38]. Although the abundance of *Lactobacillus* in infancy increased, it maintained a low abundance level based on both the current study and a previous report [39]. Likewise, the infant gut microbiome included less microorganisms that can degrade fiber, including *Ruminococcaceae* and *Lachnospiraceae*. In addition, *L. crispatus* was detected in infant feces at a low relative abundance and was not detected in maternal feces. This suggests that vaginally-derived *Lactobacillus* (from vaginal-delivery) can survive in the gastrointestinal tract of infants for a short time but might not survive well in the gastrointestinal tract of adults [40, 41].

IgA, a critical immunoglobulin in mediating early health in the infant, cannot be synthesized endogenously within the first four weeks after birth and can only be obtained from breast milk [42]. Early
exposure to passive slgA in breast milk has a favorable effect on offspring intestinal epithelial cells for the remainder of the life through influencing gene expression in progeny intestinal epithelial cells. Additionally, the specificity of slgA in breast milk depended on maternal exposure to symbiotic bacteria in the maternal gut. This may allow slgA to cover enteric bacteria found in breast milk and aid in their colonization of the infant’s gut. Bacterial flow cytometry, together with MACS and high-throughput sequencing approaches, have been used to identify slgA-coated bacteria [9]. However, we used MACS to focus on separating slgA-coated and uncoated bacteria to avoid causing death of some bacteria during the flow cytometry process. Thus, the screening of alive Bifidobacterium and Lactobacillus in further experiments needs to be performed to mining function.

Recent studies have reported that slgA coats a broad range of bacteria [44], including members of Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria [45]. However, it is hard to define a core slgA-coated bacterial composition in healthy adults due to several factors, such as geographic location, age, and sequencing method [46, 47]. Our research found that the composition of slgA-coated bacteria and uncoated bacteria from different samples from mother-infant pairs (breast milk, maternal feces and infant feces) were completely different. It was interesting that the composition of slgA-coated bacteria in breast milk and infant feces was different in the mature milk stage, and the slgA-uncoated bacteria differed only in the colostrum period. This seems to confirm that the composition of slgA conjugated bacteria changes according to the environment which also explains the difficulty in summarizing the core slgA-coated bacteria [14]. For example, Bacteroides, Roseburia, and Dorea have been detected in slgA+ form in adults feces, whereas, in infant feces, Bifidobacterium, Lactobacillus, and Clostridium were detected as slgA+ [9, 16, 48], which is partly consistent with our study. The significant difference in beta diversity of the slgA-coated and uncoated bacteria did not result in a difference in the abundance of slgA-coated bacteria among groups, but the slgA-uncoated bacteria showed a difference in abundance. At the same time, it was also found that the alpha diversity of slgA-coated bacteria was higher than that of uncoated bacteria, which could further confirm the results of the previous study that 20–50% of the bacteria in the intestine can be coated by slgA [49]. In another study using a mouse model, the ratio of slgA-coated to uncoated Bacteroidetes and Firmicutes achieved a steady state of roughly 1:1 with age. [50]. However, few studies have focused on the profile of slgA-uncoated bacteria in the human intestine, thus increasing the difficulty for researchers to summarize the variety and the ratio between slgA-coated and uncoated bacteria in healthy infants and adults.

A recent study suggested that the occurrence of specific slgA-coated bacteria in the infant’s gut represented a warning indicator of impending sickness [51]. For example, Enterobacteriaceae coated with slgA increased in the infant’s intestines up to 40 days following diagnosis of necrotizing enterocolitis [52]. In addition, similar results were found in patients with inflammatory bowel disease [11]. Thus, By monitoring changes in the quantity of slgA-coated bacteria in the gut, it may be possible to accurately forecast the emergence and progression of illnesses [8]. Therefore, an in-depth understanding of the composition of intestinal slgA-coated bacteria is necessary, especially in relation to the status of the dominant intestinal bacterium, Bifidobacterium, in infants.
Bidobacterium is recognized as the dominant bacterium in the infant intestine, especially *B. longum* subsp. *infantis* [24]. *Bidobacterium* has the ability to induce high levels of IgA production in the intestine, which promotes opportunity for it to be coated with slgA [54]. *Bidobacterium* has been shown to be highly coated with slgA in the infant gut [55]. Some studies have confirmed that slgA coats *B. longum* [14], which is consistent with our results. In addition, we found that *B. longum* subsp. *infantis* was also the main uncoated bacterium of *B. longum*. Therefore, this result shows that a single bacterial species can exist either in the form of being coated or uncoated by slgA as previously shown [56]. Interestingly, we also found that the dominant slgA-coated *Bidobacterium* in some samples changed at certain stages. For example, the dominant slgA-coated *Bidobacterium* was *B. longum* subsp. *infantis* in the feces of infants in the transition milk stage but in the same samples was *B. pseudocatenulatum* in the colostrum and mature milk stages, which is also common in maternal feces in slgA*+* form. A study has indicated that after birth the relative abundance of slgA-coated *B. longum* reaches the peak within the first six months [14]. Therefore, age is a factor that influences the structure of slgA-coated bacteria in the human gut [12, 14]. Additionally, drug intervention, especially antibiotics, not only impact total bacteria but also influence the composition of slgA coated bacteria, particularly increasing the relative abundance of slgA-coated *Lactobacillus* and *Enterococcus* [47]. Hence, the factors that influence the community of slgA-coated and uncoated bacteria both at genus and species levels should be further investigated.

Conclusion

HBM, infant feces, and maternal feces exhibited a unique diversity and composition of slgA-coated and uncoated bacteria at genus level while showing similar dominant slgA-coated bacteria, namely *Escherichia-shigella*, and dominant uncoated bacteria, namely *Pseudomonas*, respectively. For the bifidobacterial community at species level, infant and maternal feces showed a similar diversity and composition of slgA-coated and uncoated *Bidobacterium* whereas *B. longum* subsp. *infantis* was dominant in infant feces, and *B. pseudocatenulatum* was dominant in maternal feces either in slgA-coated or uncoated form. In addition, even a single *Bidobacterium* species could be found both in slgA-coated and uncoated form.

Declarations

Ethics approval and consent to participate

All participants signed the informed consent and ethics was approved by affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University from February 2020 to April 2021 (Ethics number: 2020-01-0302-03).

Consent for publication

Not applicable

Availability of data
Raw sequencing reads are accessible from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database under the accession number PRJNA758725 (16S rRNA sequence), PRJNA758828 (Bifidobacterium groEL sequence), PRJNA759050 (Lactobacillus groEL sequence).

Competing interests

The authors declare that they have no competing interests.

Funding

This study was funded by National Key R&D Program of China (2021YFD2100700), National Natural Science Foundation of China (Nos. 32021005, 31820103010), Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_1866), and the Nutrition and Care of Maternal & Child Research Fund Project of Guangzhou Biostime Institute of Nutrition & Care (2020BINCMCF003).

Authors’ contributions

B. Y. and W. C performed conceptualization; M. D. and R. Y. supplied method; H. C supplied software; H. C validate method and software; M. D and R. Y contributed to formal analysis, investigation and original draft preparation; B. Y., R. Y., R.P. R. and C. S contributed to review and editing; H. Z. contributed to supervision; W. C. contributed to funding acquisition; All authors have read and agreed to the published version of the manuscript.

Acknowledgements

Not applicable

References

Figures

Figure 1

(A), Alpha diversity of slgA-coated bacteria in HBM, infant feces and maternal feces. (B), Beta diversity of slgA-coated bacteria in HBM, infant feces and maternal feces. (C), Heatmap of the composition of slgA-
coated bacteria in HBM, infant feces, and maternal feces. Genera of relative abundance > 0.01% and calculated with Log10 are shown. The darker color corresponds higher relative abundance. The Bray-Curtis distance was utilized to calculate the difference between samples using PERMANOVA. *, P<0.05, three stages of infant feces compared to corresponding HBM. HBMI, IFI, MFI stand for sIgA-coated bacteria in group HBM, infant feces, and maternal feces. BCI, BTI, BMI, ICI, ITI, and IMI stand for sIgA-coated bacteria in colostrum, transitional milk, mature milk, and infant feces corresponding to HBM stages.
Figure 2

(A), Alpha diversity of slgA-uncoated bacteria in HBM, infant feces, and maternal feces. (B), Beta diversity of slgA-uncoated bacteria in HBM, infant feces, and maternal feces. (C), Heatmap of the composition of slgA-uncoated bacteria in HBM, infant feces, and maternal feces. Genera of relative abundances > 0.01% and calculated with Log10 are presented. The darker color corresponds to higher relative abundance. The Bray-Curtis distance was utilized to calculate the difference between samples using PERMANOVA. (D), The significantly different genera of slgA-uncoated bacteria between different samples. *, P<0.05; **, P<0.01; three stages of infant feces compared to corresponding HBMNI. #, P<0.05, ##, P<0.01, ###, P<0.001; three stages of HBMNI and infant feces compared to maternal feces. BCNI, BTNI, BMNI stand for colostrum, transitional milk, and mature milk. ICNI, ITNI, IMNI stand for three stages corresponding to HBM. MFNI stands for maternal feces. HBMNI, IFNI, MFNI stand for slgA-uncoated bacteria in group HBM, infant feces, and maternal feces. BCNI, BTNI, BMNI, ICNI, ITNI, and IMNI stand for slgA-uncoated bacteria in colostrum, transitional milk, mature milk, and infant feces corresponding to HBM stages.
Figure 3

(A, B) Comparison of Alpha diversity between slgA-coated and uncoated bacteria in HBM, infant feces and maternal feces. (C, D, E) Beta diversity between slgA-coated and uncoated bacteria in HBM, infant feces and maternal feces. The Bray-Curtis distance was utilized to calculate the difference between samples using PERMANOVA. *, P<0.05; **, P<0.01; ***, P<0.001; three stages of infant feces compared to corresponding HBM. HBMI, IFI, MFI stand for slgA-coated bacteria in group HBM, infant feces, and
maternal feces. BCI, BTI, BMI, ICI, ITI, and IMI stand for sIgA-coated bacteria in colostrum, transitional milk, mature milk, and infant feces corresponding to HBM stages. HBMNI, IFNI, MFNI stand for sIgA-uncoated bacteria in group HBM, infant feces, and maternal feces. BCNI, BTNI, BMNI, ICNI, ITNI, and IMNI stand for sIgA-uncoated bacteria in colostrum, transitional milk, mature milk, and infant feces corresponding to HBM stages.

Figure 4

(A), Heatmap of the composition of the total, sIgA-coated and uncoated bifidobacteria in HBM, infant feces, and maternal feces. Genera of relative abundances > 0.01% and calculated with Log10 are shown. The darker color corresponds to higher relative abundance of the genus. (B) The significantly different
total *Bifidobacterium* between different samples. Relative abundance of *Bifidobacterium* is presented in column standard. *, P<0.05; **, P<0.01; three stages of infant feces compared to corresponding HBM. (C), Relative abundances of slgA-coated *Bifidobacterium ruminantium* in infant and maternal fecal samples. (D) Significant different slgA-uncoated *Bifidobacterium* between different samples. #, P<0.05, ##, P<0.01, three stages of HBM and infant feces compared to maternal feces. BC, BT, BM, IC, IT, and IM stand for colostrum, transitional milk, mature milk and infant feces corresponding to HBM stages. BCI, BTI, BMI, ICI, ITI, and IMI stand for slgA-coated bacteria in colostrum, transitional milk, mature milk and infant feces corresponding to HBM stages. BCNI, BTNI, BMNI, ICNI, ITNI, and IMNI stand for slgA-uncoated bacteria in colostrum, transitional milk, mature milk and infant feces corresponding to HBM stages.

Figure 5

Distribution of slgA-coated and uncoated *Bifidobacterium* in each sample of infant (A) maternal feces (B). The relative abundance of *Bifidobacterium* was shown in row standard. The darker color of the circle corresponds to higher relative abundance.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementarymaterials.docx