In situ N2O emissions are not mitigated by hippuric and benzoic acids under denitrifying conditions

AUTHORS: Krol, D.J., Forrestal, P.J., Lanigan, G.J., Richards, K.G.

This article is provided by the author(s) and Teagasc T-Stór in accordance with publisher policies.

Please cite the published version.

The correct citation is available in the T-Stór record for this article.

NOTICE: This is the author’s version of a work that was accepted for publication in *Science of The Total Environment*. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Science of The Total Environment*, vol 511, 1 April 2015. DOI 10.1016/j.scitotenv.2014.12.074

This item is made available to you under the Creative Commons Attribution-Non commercial-No Derivatives 3.0 License.
In situ N$_2$O emissions are not mitigated by hippuric and benzoic acids under denitrifying conditions

Krol, D.J.1*, Forrestal, P.J.1, Lanigan, G.J.1, Richards, K.G.1

1) Teagasc, Johnstown Castle Environmental Research Centre, Wexford, Ireland

*Corresponding author: dominika.krol@teagasc.ie, tel: +353 53 9171301

Abstract

Ruminant urine patches deposited onto pasture are a significant source of greenhouse gas nitrous oxide (N$_2$O) from livestock agriculture. Increasing food demand is predicted to lead to a rise in ruminant numbers globally, which, in turn will result in elevated levels of urine-derived N$_2$O. Therefore mitigation strategies are urgently needed. Urine contains hippuric acid and together with one of its breakdown products, benzoic acid, has previously been linked to mitigating N$_2$O emissions from urine patches in laboratory studies. However, the sole field study to date found no effect of hippuric and benzoic acids concentration on N$_2$O emissions. Therefore the aim of this study was to investigate the in situ effect of these urine constituents on N$_2$O emissions under conditions conducive to denitrification losses.

Unadulterated bovine urine (0 mM of hippuric acid, U) was applied, as well as urine amended with either benzoic acid (96 mM, U+BA) or varying rates of hippuric acid (8 and 82 mM, U+HA1, U+HA2). Soil inorganic nitrogen (N) and N$_2$O fluxes were monitored over a 66 day period. Urine application resulted in elevated N$_2$O flux for 44 days. The largest N$_2$O fluxes accounting for between 13% (U) and 26% (U+HA1) of total loss were observed on the day of urine application. Between 0.9 and 1.3% of urine-N was lost as N$_2$O. Cumulative N$_2$O loss from the control was 0.3 kg N$_2$O-N ha$^{-1}$ compared with 11, 9, 12, and 10 kg N$_2$O-N ha$^{-1}$
for the U, U+HA1, U+HA2, and U+BA treatments, respectively. Incremental increases in urine HA or increase in BA concentrations had no effect on N$_2$O emissions. Although simulation of dietary manipulation to reduce N$_2$O emissions through altering individual urine constituents appears to have no effect, there may be other manipulations such as reducing N content or inclusion of synthetic inhibitory products that warrant further investigation.

Keywords: benzoic acid, hippuric acid, N$_2$O mitigation, greenhouse gas, urine constituents, urine patches, denitrification

1. **Introduction**

Nitrous oxide (N$_2$O), a greenhouse gas (GHG) with a global warming potential of 298 over a 100 year period, is one of the main GHGs contributing to global climate change (IPCC, 2013). Rising concentrations also contribute to the destruction of the stratospheric ozone layer (Ravishankara et al., 2009). During the last century, atmospheric N$_2$O concentrations have increased by approximately 20% and are still increasing by 0.2-0.3% yr$^{-1}$ (Thomson et al., 2012). Agriculture contributes over 40% of global N$_2$O emissions (Denman et al., 2007), with soil-based emissions in pastoral systems having a proportionately large impact. In Ireland, 32% of national GHG emissions originate from agriculture (Duffy et al., 2013) where the predominant system is pastoral based production from ruminant livestock (Breen et al., 2010). Grazing ruminant livestock deposit 75 – 90% of their nitrogen (N) intake onto pasture as dung and urine. These pasture, range and paddock (PRP) emissions comprise over 40% of the N$_2$O emitted from these production systems (Oenema et al., 2005). A typical urine patch has a surface area of 0.2 m2 and receives 2 L of urine with an N rate of 10 g N L$^{-1}$, which corresponds to an N rate of 1000 kg N ha$^{-1}$ (Haynes and Williams, 1993), although significant variation around these values is to be expected. The Irish national dairy herd of 1.08 million
cows deposits approximately 21.65 million litres of urine to Irish grassland soils on a daily basis (CSO, 2013, Duffy et al. 2014). This represents an N load to the soil of approximately 216.5 Mg day\(^{-1}\). Between 50 and 90% of the urinary-N is in the form of urea (Doak, 1952; Bristow et al., 1992). Urea rapidly hydrolyses to ammonium (\(\text{NH}_4^+\)), and is then nitrified to nitrate (\(\text{NO}_3^-\)) which may be subsequently denitrified through a series of enzyme-catalysed, microbial processes. Nitrous oxide can be produced during both nitrification and denitrification processes, as well as nitrifier denitrification (Wrage et al., 2001, Zhu et al., 2013).

The \(\text{N}_2\text{O}\) emissions from urinary N vary widely with reported emission factors (E.F.) ranging between 0.3 (van der Weerden et al., 2011) and 13.3% (Kool et al., 2006a). On a national scale, the \(\text{N}_2\text{O}\) emissions from urine patches are estimated using a default EF value of 2% from the current Intergovernmental Panel on Climate Change (IPCC) guidelines (IPCC, 2006). An increase in ruminant numbers globally driven by a rise in demand for dairy and meat could lead to elevated levels of urine-derived \(\text{N}_2\text{O}\). Therefore mitigation strategies are urgently needed (Oenema et al., 2005). Possible mitigation technologies can be divided into three categories: a) soil management, b) animal interventions, and c) animal breeding (de Klein and Eckard, 2008; Luo et al, 2010). Specific technologies include manipulation of \(\text{NO}_3^-\) availability, soil aeration, fertiliser management, effluent management, nitrification inhibitors, irrigation or drainage, reducing wet season grazing, altered diet, feed additives, and improving herd genetics.

Nitrogen intake is a principal driver of N losses from cattle (Dijkstra et al., 2013), thus optimizing N intake by animals is a strategy for mitigating \(\text{N}_2\text{O}\) losses associated with N deposition to pasture in dung and urine. Another strategy of interest is dietary amendment to
manipulate the composition and/or the partitioning of animal excreta with the major focus being on urinary N, which is most vulnerable to losses. Hippuric acid (HA) concentration can be manipulated by adjusting the protein content of cattle diets (Kreula et al., 1978, Dijkstra et al., 2013). Kool et al. (2006a) found that increasing HA content of synthetic urine from 3% to 9% of total N decreased N₂O emissions from 7.2% to 4.5%. Similarly, the study of van Groenigen et al. (2006) showed that increasing HA concentration in synthetic urine from 0.4 to 5.6 mM kg⁻¹ of soil decreased N₂O by over 50%. In urine, HA breaks down to glycine and benzoic acid (BA) (Bristow et al., 1992). The latter inhibit enzymes and general microbial activity (Fenner et al., 2005) and these antimicrobial properties have led to the use of BA in food preservation (Chipley, 1983). Microbial inhibition of BA is performed through disrupting microbial cell membrane permeability which affects substrate transport and oxidative phosphorylation from the electron transport system (Fresse et al., 1973, Brul and Coote, 1999). Kool et al. (2006b) suggested that N₂O inhibition occurred in the presence of BA. This hypothesis was confirmed by van Groenigen et al. (2006) who found that both HA and BA inhibit denitrification and N₂O emissions. A study by Bertram et al. (2009) found a 65% reduction in N₂O emissions from real urine treatments with increased HA or BA concentrations. Bertram et al. (2009) noted that both nitrification and denitrification were affected by the treatments. Although the effect of HA and BA was confirmed in the laboratory experiments of Kool et al. (2006a), van Groenigen et al. (2006), and Bertram et al. (2009), the sole in situ study to date found no effect of HA and BA concentration on N₂O emissions (Clough et al. 2009). It was argued that the environmental conditions during the study did not favour N₂O loss due to low water-filled pore space (WFPS), on average 32%. Furthermore, the authors pointed out that the lack of N₂O response to HA and BA may be related to differences in soil pH, microbial communities, and the presence of vegetation. The
authors suggested a comprehensive \textit{in situ} examination of the effect of HA and BA on N$_2$O and microbial sub-populations.

In light of the conflicting results from previous lab studies (Kool et al., 2006a, van Groenigen et al., 2006, Bertam et al., 2009,) and the single \textit{in situ} field study (Clough et al., 2009), the current experiment provides an \textit{in situ} evaluation of the effects of HA and BA on N$_2$O emissions from real urine applied to pasture. Timing of the experiment was chosen to coincide with WFPS values conducive to denitrification and high N$_2$O fluxes (Dobie and Smith, 2001; Smith et al., 2003). The specific objectives of this study were: 1) to evaluate the effect of incremental increases in HA, and an increase in BA concentration on urine N$_2$O emissions, 2) to quantify potential reduction in N$_2$O emissions from urine as affected by BA or HA composition, and 3) to assess the differences between HA and BA amended urine on N$_2$O emissions.

2. Materials and Methods

2.1 Site characteristics

The present \textit{in situ} experiment was conducted on a loam soil (13.9% clay, 33.2% silt, 52.9% sand; N content 0.3%, C content 3.16%, organic C content 3.14%, pH 5.7) classified as a Eutric Cambisol (FAO-Unesco, 1988) at the Teagasc Johnstown Castle Environmental Research Centre, Co. Wexford, Ireland (52°18’N; 6° 30’W). Pasture at the study site consisted of perennial ryegrass (\textit{Lolium perenne} L.) reseeded in 2010, which had a history of replacement stock grazing. Previous fertilisation consisted of a combination of urea and calcium ammonium nitrate (CAN) at a mean rate of 84 kg N ha$^{-1}$ yr$^{-1}$ over the previous four years. Animals were excluded from the experimental site for six months prior to the beginning of the experiment with grass being harvested for silage in order to minimise
potential confounding effects of urine patches resulting from prior grazing. Grass was cut to a 5 cm height and allowed to regrow to a height of approximately 7-8 cm prior to commencement of the experiment. Rainfall, air and soil temperature were recorded at the meteorological station 1 km from the experimental site.

2.2 Treatments

Urine was collected directly from lactating Holstein-Friesian dairy cows which had been grazing at pasture. Urine was collected into 25 L containers, sealed to minimize N loss by volatilization, and refrigerated. The required volume of refrigerated urine for the experiment was homogenised by mixing in a 220 L barrel. This was sub-sampled for N content determination and then rapidly returned to 25 L drums, sealed, and refrigerated. The urinary-N content was 4.5 g N L⁻¹. The N content was adjusted to approximately 8.0 g N L⁻¹ by adding urea to the urine to approach the upper bound of urine-N content for dairy cows reported by Haynes and Williams (1993). Urine was amended to specific concentrations of HA or BA by spiking with either or both acids. A control urine treatment received no HA or BA addition. Urine was stored at 4°C, and for the two days prior to treatment applications urine temperature was increased to 30°C, the capacity of the available incubation facilities, prior to application to approximate in vivo urination, at body temperature. The experimental treatments associated with urine constituent concentrations are summarized in Table 1.

To verify HA and BA concentrations samples were collected at application. Two 30 mL sub-samples of urine from every treatment were taken. Urine samples were diluted 1:3 with high-performance liquid chromatography (HPLC) grade deionised water and one sub-sample was preserved by adding 1M H₂SO₄ to reduce the pH to 3 and the other sub-sample was preserved by adding 100 uL L⁻¹ chloroform. Samples were labelled and stored at -20°C until analysis. The concentrations were determined using HPLC at the Agri Food Biosciences Institute,
Belfast. Urinary-N content was determined in a 1:500 dilution of urine samples on an Aquakem 600 discreet analyser (Cabrera and Beare, 1993).

Urine treatments were applied in the morning of 14th October 2013. The experimental design was a complete randomized block with six replicates. A volume of 2 L of urine was applied uniformly inside each 0.16 m3 chamber equivalent to an N loading of approximately 1000 kg N ha$^{-1}$ creating N$_2$O sampling urine patch. Paired with each N$_2$O sampling urine patch was an adjacent urine patch of a same size that was used for soil sampling. A 0.16 m3 N$_2$O chamber collar was used as a template for urine application to the soil sampling plot. These paired soil sampling urine patches were used to measure soil pH, gravimetric water content and mineral N concentrations as noted below.

2.3 N$_2$O sampling and analysis

Nitrous oxide fluxes were measured on 19 occasions over ten weeks following application of treatments using the closed static chamber technique (Mosier, 1989; de Klein and Harvey, 2012). Square stainless steel collars for N$_2$O flux measurements with dimensions of 40 cm by 40 cm were inserted at a minimum depth of 5 cm into the soil before urine application. Stainless steel non-insulated, non-vented covers (10 cm high) were used to form a headspace chamber for measurement of N$_2$O, with a total headspace volume of approximately 16 L. Chamber collars were covered with a neoprene strip and a 10 L container filled with water was placed on top of chamber cover upon sampling to ensure airtight seal of the headspace. A 10 mL sample was drawn 40 minutes after chamber closure through a rubber septum (Becton Dickinson, UK) using a 10 mL polypropylene syringe (BD Plastipak, Becton Dickinson, UK) fitted with a hypodermic needle (BD Microlance 3, Becton Dickinson, UK). The 10 mL air sample was injected into a pre-evacuated (to -1000 mbar) 7 mL screw-cap septum glass vials.
The syringe was flushed once with ambient air before collecting sample from the chamber. Eight samples of ambient air were collected on each gas sampling occasion and were used as T_0 for the N_2O concentration for the flux calculations from the chambers. Linearity of headspace N_2O concentrations was checked at each sampling occasion by collecting five headspace samples per chamber from five various treatments throughout 60 minutes closed period (Chadwick et al., 2014). Nitrous oxide concentrations were analysed using a gas chromatograph (GC) (Varian CP 3800 GC, Varian, USA) fitted with a 63Ni electron capture detector (ECD) with high purity helium as a carrier gas. Samples were returned to ambient pressure immediately before analysis and fed into the system by a Combi-Pal automatic sampler (CTC Analysis, Switzerland). The temperatures of column, injector and detector were 60, 60 and 300 °C, respectively. The GC was calibrated daily and a reference gas standard of known concentration was analysed every eight unknown samples. Areas under N_2O peaks were integrated using Star Chromatography Workstation (Varian, USA). Hourly N_2O emissions were calculated based on the rate of change in N_2O concentration within the chamber during the measurement period. These emissions accounted for air temperature, atmospheric pressure, and the ratio of surface area to chamber volume. Samples were collected between 10 am and 12 am and therefore hourly N_2O flux was assumed to be representative of the average hourly flux of the day and was subsequently used to calculate daily emissions (Blackmer et al. 1982; de Klein et al. 2003). Cumulative emissions were calculated by integrating the calculated daily fluxes and linear interpolation between measurement points (de Klein and Harvey, 2012).

2.4 Soil sampling and analysis

Soil was sampled on 12 occasions over ten weeks following application of treatments. Three replicate paired soil sampling patches were sampled for each treatment with a soil corer (3
cm diameter x 10 cm depth). The cores were placed in plastic sample bags, sealed, and placed in a coolbox for the transport into the laboratory. Samples were sieved using a 4 mm sieve and sub-samples were analysed for gravimetric moisture content, mineral N content, and pH. Gravimetric moisture content was determined by drying the samples for 24 h at 105°C. Volumetric soil moisture content was determined using Theta Probe (type ML2, Delta-T-Devices, UK) during each measurement in order to calculate WFPS (Maljanen et al., 2007). Mineral N was determined by extraction in 2 M KCl (20 g of fresh soil: 100 mL 2 M KCl, shaken for 1 h), the extracts were analysed for NH$_4^+$-N and total oxidised N (TON) which is a sum of nitrite (NO$_2^-$-N) and NO$_3^-$ by colorimetric analysis using an Aquakem 600 discrete analyser. Soil pH was determined in a 1:2 suspension of deionised water with a digital pH meter (In Lab Routine, Mettler Toledo) with glass and calomel electrodes.

2.5 Statistical analyses

Repeated measures ANOVA was conducted using proc MIXED procedure of SAS 9.3 (© 2002-2010, SAS Institute Inc., Cary, NC, USA) was used to output lsmeans by treatment and day for N$_2$O-N, soil mineral N: NH$_4^+$-N and TON, and soil pH. This was a blocked, two way factorial test with both day and treatment as factors. Daily N$_2$O-N flux was log-transformed log(flux + 10) prior to the test in order to overcome non normal distribution of data. Differences between treatments in terms of cumulative N$_2$O-N flux over the study period were determined using the proc MIXED procedure of SAS and the F-protected Least Significant Difference (L.S.D.) test. The F-protected L.S.D. test, which is a liberal test, was chosen to protect against Type I error i.e. to guard against incorrect rejection of a true null hypothesis.
3. Results

3.1 Environmental variables

The field site received 253 mm of rainfall during the 66 days of the experiment. Within two weeks of urine application, 155.3 mm rainfall was recorded, approximately 130% of the 30 year average rainfall for October. Approximately 50% of the rain fell within the first ten days post-application (Fig. 1). Soil temperature generally decreased throughout the field experiment, falling from a daily average of 14°C to below 7°C (Fig. 1). Between October and December there was approximately 9% more rainfall compared with the 30 year average and the soil temperature was on average 11% higher. The WFPS averaged 71.4% (S.E.M 1.3, n=342) for the experimental period and ranged between 60.1% and 80.3%.

3.2 N₂O fluxes

Nitrous oxide fluxes increased immediately following treatment application. The largest daily fluxes were observed on the day of application for all three amended urine treatments (Fig. 2). Throughout the experiment, fluxes from the control treatment ranged between 1.1 and 12.0 g N₂O-N ha⁻¹ d⁻¹ (Fig. 2). Mean daily N₂O fluxes from the urine treatments over the experimental period were greater (P<0.05) than fluxes from the control ranging from 20 to 702, 10 to 958, 19 to 1160, and 15 to 757 g N₂O-N ha⁻¹ d⁻¹ for the U, U+HA1, U+HA2, and U+BA treatments, respectively. Nitrous oxide fluxes decreased to control treatment values by Day 44 in the U+HA2 treatment and Day 51 in the U, U+HA1 and U+BA treatments. Effects of urine constituents manipulation were only seen on the day of urine application when fluxes from the U+HA1, U+HA2, and U+BA treatments were higher (P<0.05) than those from unadulterated urine. Fluxes of N₂O from the U, U+HA1, U+HA2, and U+BA treatments were not different throughout the remainder of the experiment.
Cumulative N_2O loss for the control treatment over the duration of the experiment was 0.3 kg N_2O-N ha$^{-1}$ compared with 10.6, 9.2, 11.6, and 9.9 kg N_2O-N ha$^{-1}$ for the U, U+HA1, U+HA2, U+BA treatments respectively (Fig. 3). Urine deposition increased cumulative N_2O emissions ($P<0.05$) compared to the control (Fig. 3), however, there were no effects of urine manipulation on cumulative N_2O emissions. The cumulative N_2O-N fluxes as a percentage of applied urine-N equated to 1.0(±0.13), 0.9(±0.16), 1.3(±0.28), and 0.9(±0.10) for the U, U+HA1, U+HA2, and U+BA treatments, respectively (S.E.M. in brackets).

Linearity analysis of N_2O data showed that 14% of all measured values represented no flux, and of valid fluxes 87% represented linear and 13% quadratic increase over time.

3.3 Soil inorganic N and soil pH

Mean soil NH$_4^+$-N concentrations in the control plots ranged between 3.1 and 22.5 kg N ha$^{-1}$. Concentrations of NH$_4^+$-N in the soil under urine treatments ranged from 9.4 to 443.5, 6.3 to 389.8, 4.6 to 325.2, and 5.2 to 385.9, kg N ha$^{-1}$ for the U, U+HA1, U+HA2, and U+BA treatments, respectively. Soil NH$_4^+$-N concentrations were highest immediately following urine application and ranged between 325.2 and 443.5 kg ha$^{-1}$ for both the U+HA2 and U treatments on Day 0. Soil NH$_4^+$-N levels from urine treatments were tenfold higher than those of the control until Day 18 and steadily declined over the experiment, returning to similar levels as in the control by Day 44. Higher ($P<0.05$) soil NH$_4$-N levels were observed in the U treatment on day 10 compared with the U+HA1 treatment, and on Day 0 compared with the U+HA2 treatment (Fig. 4a). There were no differences in soil NH$_4^+$-N concentrations between the U+HA1, U+HA2, and U+BA treatments throughout the experiment and concentrations declined at a similar rate for all urine treatments (Fig. 4a).

Concentrations of soil TON in the control were low throughout the measurement period with mean concentrations between 0 and 11.6 kg N ha$^{-1}$ (Fig. 4b). As the NH$_4^+$-N pool in the urine
treatments nitrified, soil TON levels increased over time with the U+BA and U+HA1 treatments different ($P<0.05$) from the control from Day 15, the U treatment from Day 18 and the U+HA2 treatment on Day 24 before returning to levels found in the control by Day 66. Soil TON concentration in the U treatment was greater ($P<0.05$) than in the HA2 treatment between Days 51 and 58, and was also greater ($P<0.05$) in the U+BA than in the U+HA1 and U+HA2 treatments on Day 58. Soil TON concentrations under the urine treatments ranged from 5.8 to 102.6, 7.7 to 86.3, 3.0 to 66.4, and 4.0 to 104.3, kg N ha$^{-1}$ for the U, U+HA1, U+HA2, and U+BA treatments, respectively.

Soil pH for the control treatment ranged between 5.4 and 5.7 (0-10 cm) during the experimental period (Fig. 5). Following application of urine treatments soil pH increased ($P<0.01$) to between 6.4 and 6.8 (Fig. 5), after which soil pH declined over time. The rate of decline in soil pH was very similar to the decreasing NH$_4^+$-N concentrations (Fig. 4a) during the initial 16 days. On Day 18 soil pH values for the urine treatments dropped below the control ($P<0.05$) (Fig. 5). On Day 37 soil pH values of the U+BA and U+HA1 treatments were lower ($P<0.05$) than the control. However, by Day 44 there were no differences in soil pH values between the urine treatments and the control.

4. Discussion

Urine deposition stimulates N$_2$O emissions and in the current experiment these fluxes spiked rapidly following urine application. The largest N$_2$O fluxes, which accounted for between 13% (Urine) and 26% (Urine + HA1) of the cumulative emissions, were observed on the day of urine application. This effect was also reported by Williams et al. (1999) who found the highest N$_2$O fluxes occurred 6 hours following urine application. Maljanen et al. (2007) also reported maximum N$_2$O emissions immediately after urine application in summer and
autumn. We hypothesise that an increase in water soluble carbon content, possibly due to the lysing of microbial cell membranes in soil following urine application or soil aggregate slaking could have been responsible for stimulating denitrification activity leading to high N_2O emissions (Lambie et al., 2012). However, many studies either do not measure N_2O emissions on the day of urine application, or only point out measurement frequency without indicating the starting point (van Groenigen et al., 2005, Clough et al., 2009, van der Weeden et al., 2011). Wachendorf et al. (2008) suggested that the maximum N_2O emissions might have been missed in their study as a result of long intervals between gas sampling. Finding the highest N_2O flux on the day of urine application underpins the importance of gas measurement immediately following treatment application.

Fluxes of N_2O remained elevated in the current study for a minimum of 44 days which is comparable with other studies that have found emissions elevated for 30-70 days (Allen et al., 1997; van Groenigen et al., 2005; van der Weerden et al., 2011). Other studies, however, report longer emission periods, with de Klein et al. (2003) reporting that four months after urine application the N_2O fluxes were still significantly higher than background levels. It is possible that in this study, carried out on a well-draining loam soil, leaching was a significant N loss pathway (Clough et al., 1998). The findings of this study are in agreement, however, with the work of Selbie et al. (2014) that was conducted on a sandy loam soil from the same location as the current experiment. The emission factors for the urine treatments over the 66 day period were comparable to previously reported values of 0.0% to 2.3% following urine application in autumn-winter and spring-summer (Allen et al., 1996), 0.3 to 0.9% over 103 days (van Groenigen et al., 2005), and 0.29% over 125-133 days following autumn application and for 166-173 days following spring application (van der Weerden et al., 2011). Other studies reported emission factors of 0.3 to 2.5% over 80, 150, and 182 days from the Waikato organic, the Waikato mineral and the Otago soil, respectively (de Klein et al., 2003),
or <1% over 150 days (Clough et al. 1996) and <2% over 406 days (Clough et al., 1998).

Previous studies found in Ireland reported emission factors below 0.4% over 80 days in year one and 360 days in year two (Selbie et al., 2014). These reported emission factors are substantially lower than the IPCC EF of 2% per annum (IPCC, 2006).

Simulation of dietary manipulation of ruminant urine by adding HA or BA had no significant effect on N₂O emissions under conditions of high WFPS (60 - 80%) favouring loss via denitrification. Similarly, Clough et al. (2009), the only in situ experiment to date to examine the effect of urine HA and BA addition, also reported no effect of HA and BA manipulation on N₂O emission. However, Clough et al. (2009) stated that their results were potentially inconclusive because of low WFPS (<35%) and high soil pH (>6.4) throughout the experiment. Antimicrobial activity of BA is only effective in acidic conditions, as the undissociated molecule is responsible for antimicrobial activity (Chipley, 1983). Both HA and BA are weak organic acids with pKa of 3.62 and 4.19, respectively, therefore over 50% of these compounds would have been present in their dissociated form in this study. In basic conditions, BA dissociates to the benzoate form, which is not as toxic to bacteria as its acid form. After the initial rise following urine application, soil pH at 0-10 cm in this experiment oscillated around pH 5, which should allow for some of the compound to remain in the undissociated acid form and to exhibit its antimicrobial properties. However this effect was not seen and it can be speculated that microbial community was not affected by the compounds. Additionally, the dissociated forms of HA and BA carry a negative charge and, as such, are liable to leaching.

All four urine treatments produced a similar pattern of N₂O emissions, although differences in N₂O emission were observed on the day of application, where the U+HA2 treatment emitted more N₂O than other urine treatments (P<0.05). However, increased concentrations of HA or BA consistently resulted in a small, but not significant elevation rather than
reduction of N$_2$O emissions. It had been hypothesised by van Groenigen et al. (2006) and Bertram et al. (2009) that 96 mM HA and 50 mM BA would mitigate N$_2$O loss, but this was not observed in the current study. Effects of urine composition on N$_2$O emissions were estimated using a liberal statistical testing but even this approach revealed no significant reduction in emissions due to amending HA and BA concentrations. Overall, HA or BA addition in this study had no in situ effect on cumulative N$_2$O emissions.

Previous studies reporting HA or BA mitigation effects were conducted in laboratory conditions on soil cores with no vegetation present (Bertram et al., 2009; van Groenigen et al., 2006). Mechanical disturbance to soil, such as sieving and drying, can alter microbial community size, structure and function (Garcia-Orenes et al., 2013). The studies of both van Groenigen et al. (2006) (sods from underneath grass cover) and Bertram et al. (2009) (sieved soil packed into cores) used disturbed soil communities. This could have subsequently affected residence and metabolism of HA and BA in soil in these studies. Therefore microbial activity responsible for degradation of HA/BA could have been higher in the in situ experiment resulting in rapid decrease of HA/BA concentrations. Moreover, laboratory experiments are performed in controlled conditions and in some cases on homogenised soils, therefore greatly reducing spatial variability associated with in situ experimentation, and making it more likely to confirm treatment effects. Finally, laboratory studies do not simulate leaching which can be a significant loss pathway, especially in sandy textured, well drained soils (Clough et al., 1998).

Benzoic acid naturally occurs in the soil through root exudates (Bertin et al., 2003) and can be broken down by soil bacteria (Siciliano and Germida, 1998; Deubel et al., 2000). Clough et al. (2009) hypothesised that if the pasture species used in their study exuded BA through root rhizo-deposition, then the soil microbial community could have been pre-dosed to this compound and its toxicity subsequently reduced. Therefore BA could have been degraded
rapidly after urine application. Furthermore, a large proportion of microbial biomass in temperate soils consists of fungi (Ruzicka et al., 2000), especially in permanent grasslands (Frey et al., 1999). A previous study conducted on Irish grassland observed that soil mineral N transformations and denitrification were dominated by fungi (Laughlin & Stevens 2002). It is possible that BA does not affect fungal denitrification and thus would not affect soils where fungi-derived N$_2$O emissions predominate.

In the current experiment, urine treatments were applied to pasture, directly simulating deposition of excreta by grazing ruminants. Our results lend weight to the lack of in situ N$_2$O mitigation potential of both HA and BA observed by Clough et al. (2009). This study speculated that the lack of observed effect in their experiment may have been due to conditions which did not favour N$_2$O loss i.e. low WFPS (18 - 51%) and pH between 6.4 and 8.5. These conditions do not encourage denitrification and antimicrobial activity of BA occurring predominantly in acidic environment, therefore could have served as a possible explanation for low emissions and uniform response to treatments. The current study addresses the knowledge gap of N$_2$O mitigation potential under environmental conditions which were favourable for N$_2$O loss i.e. high WFPS (60 - 80%) (Smith et al., 2003), and where the antimicrobial activity of BA is viable i.e. acidic pH (Chipley, 1983).

The range of concentrations of HA and BA used in this work was comparable to that of previous studies. However, the infiltration depth of the urine solutions applied to the soil surface differs hugely. Previous laboratory studies used cores with soil depths of 5 cm and 6 cm for van Groenigen et al. (2006) and Bertram et al. (2009), respectively. Clough et al. (2009) assumed urine movement to a depth of 10 cm, but the study of Monaghan et al. (1999) demonstrated the potential of urine to infiltrate further. In their case, 68% of urine moved below 20 cm within 6 hours of application. Additionally, Pakrou and Dillon (1995) found that rainfall promoted downward movement of urine by macropore flow causing urine to infiltrate
to a depth of 30 cm in their experiment. Williams and Haynes (1994) reported an irregular pattern of urine infiltration to a maximum depth of 40 cm. These reports suggest that the effective concentration of both compounds in urine affected soil could have reduced dramatically under in situ conditions compared with the cores used in the lab experiments.

Little is known about the fate and longevity of these compounds in soils. Clough et al. (2009) hypothesised that the efficacies of the HA/BA could have been reduced due to preferential leaching of the acids away from urine. Selbie et al. (2013) hypothesised that the fate of minor urine constituents such as HA/BA is likely to be similar to that of urea, but with some delay, probably due to a longer decomposition process. The effective threshold concentration of BA for inhibition of N₂O producing microorganisms is unclear. It is commonly determined based on factors including pH, temperature, genus and species of the microorganisms in question (Chipley, 1983). However, if higher concentrations of HA or BA in urine are needed to mitigate N₂O emissions, these could be difficult to achieve due to the low solubility of both compounds. Solubility of HA and BA in cold water is 22 mM and 25 mM, respectively (Fischer Scientific, 2014), and is higher in urine (McGeough, personal communication). The mean concentration of HA in unaltered ruminant urine found by Kreula et al. (1978) was 66 mM, whereas concentrations of both HA and BA in previous studies were amended to a maximum of 96 mM and 50 mM, respectively (Bertram et al., 2009). In this experiment, the highest concentrations for HA and BA were 82 mM and 96 mM, respectively, which for HA is comparable to previous studies, and for BA is the highest achieved concentration to date. It was not possible to achieve higher concentrations in natural urine collected from dairy cows.

Mineral N in urine-affected soils followed established patterns over time (Wachendorf et al., 2008). Ammonium concentrations were highest immediately after urine application, which is consistent with hydrolysis of urea, and declined at a similar rate regardless of urine treatment, whereas TON concentrations increased over time which is consistent with
nitrification of ammonium. As nitrification occurs there is a corresponding decline in soil pH which is consistent with the release of free H$^+$ ions during nitrification (Whitehead, 1995; Cookson and Cornforth, 2002; Clough et al., 2009). Contrary to Bertram et al. (2009), mineral N dynamics were unaffected by the composition of the applied urine.

Although simulation of dietary manipulation to reduce N$_2$O emissions through altering individual urine constituents appears to have no effect, there may be other urine manipulations, such as reducing N content or inclusion of novel inhibitory products that warrant further investigation.

5. Conclusions

N$_2$O loss from urine deposition on pasture was measured under conditions favourable for both denitrification and the antimicrobial activity of benzoic acid. N$_2$O fluxes were observed to increase immediately post-urine application, possibly due to mobilisation of labile carbon pools in the soil. Despite this, the cumulative N$_2$O emission factors over the experimental period ranged from 0.9 – 1.3%, substantially below the 2% IPCC default emission factor. Simulating manipulation of ruminant urine by adding incremental levels of hippuric and/or benzoic acids had no effect on N$_2$O emissions indicating that these acids do not affect denitrification in situ. Similarly, no treatment effect on nitrification was observed as soil mineral N following application of urine was not affected. Although promising N$_2$O loss mitigation responses to increasing levels of benzoic and hippuric acid in urine were observed in the lab these acids are not effective at mitigation N$_2$O loss in situ.
Acknowledgements

The authors would like to thank the laboratory and field staff at both Teagasc Johnstown Castle with their assistance on this project. This research was financially supported under the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Food and the Marine (Grant numbers RSF10/RD/SC/716 and 11S138).
References

Nations framework convention on climate change. Wexford: Environmental Protection Agency.

Table. 1 Summary of urine compositions and N application rate for the applied treatments.

List of Figures

Fig. 1. Rainfall, air and soil temperature over the 66 day experimental period at the meteorological station 1 km from the experimental site. Water-filled pore space values determined from in situ sampling at the experimental site.

Fig. 2. Effect of urine treatments on mean daily fluxes of N$_2$O from the pasture soil over a 66 day in situ experiment where treatments were applied on 14.10.2013, and final measurements were taken on 19.12.2013. Data points are the means (Error bar indicates pooled standard error of the mean, n=6).

Fig. 3. Effect of urine treatments on mean cumulative fluxes of N$_2$O from the pasture soil over a 66 day in situ experiment. Data points are the means. (Letters indicate differences at 95% confidence interval, n=6).

Fig. 4. Effect of urine treatments on soil ammonium (A) and soil total oxidised nitrogen (B) concentrations over the 66 day in situ experiment. Data points are the means. (Error bars indicate pooled standard error of the mean, n=3).

Fig. 5. Effect of urine treatments on soil pH over the 66 day in situ experiment. Data points are the means. (Error bar indicates pooled standard error of the mean, n=3).