Loading...
High Pressure Processing of Dairy Foods
Citations
Altmetric:
Date
2000-09-01
Collections
Files
Loading...
eopr-4403.pdf
Adobe PDF, 525.12 KB
Research Projects
Organizational Units
Journal Issue
Citation
Donnelly, W.J., Beresford, T., et al., High Pressure Processing of Dairy Foods, End of Project Reports, Teagasc, 2000.
Abstract
The term High Pressure Processing (HPP) is used to describe the technology whereby
products are exposed to very high pressures in the region of 50 - 800 MPa (500 - 8000
Atmospheres). The potential application of HPP in the food industry has gained popularity
in recent years, due to developments in the construction of HPP equipment which makes
the technology more affordable. Applying HPP to food products results in modifications to
interactions between individual components, rates of enzymatic reactions and inactivation
of micro-organisms.
The first commercial HPP products appeared on the market in 1991 in Japan, where HPP
is now being used commercially for products such as jams, sauces, fruit juices, rice cakes
and desserts. The pioneering research into the application of HPP to milk dates back to the
end of the 19th century. Application of HPP to milk has been shown to modify its gel
forming characteristics as well as reducing its microbial load. HPP offers the potential to
induce similar effects to those generated by heat on milk protein.
Recent reports have also indicated that HPP could accelerate the ripening of cheese. Much
of the Irish cheese industry is based on the production of Cheddar cheese, the ripening time
for which can vary from 4 - 12 months or more, depending on grade. A substantial portion
of the cost associated with Cheddar manufacture is therefore attributed to storage under
controlled conditions during ripening. Thus, any technology which may accelerate the
ripening of Cheddar cheese while maintaining a balanced flavour and texture is of major
economic significance.
While food safety is a dominant concern, consumers are increasingly demanding foods that
maintain their natural appearance and flavour, while free of chemical preservatives. HPP
offers the food industry the possibility of achieving these twin goals as this technology can
lead to reduced microbial loads without detrimentally effecting the nutritional or sensory
qualities of the product.
The development of food ingredients with novel functional properties offers the dairy
industry an opportunity to revitalise existing markets and develop new ones. HPP can lead
to modifications in the structure of milk components, in particular protein, which may
provide interesting possibilities for the development of high value nutritional and functional
ingredients.
Hence these projects set out to investigate the potential of HPP in the dairy industry and
to identify products and processes to which it could be applied.
