• Login
    View Item 
    •   T-Stór
    • Food Programme
    • Food Biosciences
    • View Item
    •   T-Stór
    • Food Programme
    • Food Biosciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of T-StórCommunitiesPublication DateAuthorsTitlesSubjectsFunderThis CollectionPublication DateAuthorsTitlesSubjectsFunderProfilesView

    My Account

    LoginRegister

    Information

    Deposit AgreementLicense

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    In Vitro Activities of Nisin and Nisin Derivatives Alone and In Combination with Antibiotics against Staphylococcus Biofilms

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    fmicb-07-00508.pdf
    Size:
    3.083Mb
    Format:
    PDF
    Download
    Author
    Field, Des
    O'Connor, Rory
    Cotter, Paul D.
    Ross, R Paul
    Hill, Colin
    Keyword
    Biofilm
    bacterial resistance
    antimicrobial peptide
    Nisin
    lantibiotic
    bacteriocin
    staphylococci
    Antibiotics
    Date
    18/04/2016
    
    Metadata
    Show full item record
    Statistics
    Display Item Statistics
    URI
    http://hdl.handle.net/11019/1062
    Citation
    Field D, O’ Connor R, Cotter PD, Ross RP and Hill C (2016) In Vitro Activities of Nisin and Nisin Derivatives Alone and In Combination with Antibiotics against Staphylococcus Biofilms. Front. Microbiol. 7:508. doi: 10.3389/fmicb.2016.00508
    Abstract
    The development and spread of pathogenic bacteria that are resistant to the existing catalog of antibiotics is a major public health threat. Biofilms are complex, sessile communities of bacteria embedded in an organic polymer matrix which serve to further enhance antimicrobial resistance. Consequently, novel compounds and innovative methods are urgently required to arrest the proliferation of drug-resistant infections in both nosocomial and community environments. Accordingly, it has been suggested that antimicrobial peptides could be used as novel natural inhibitors that can be used in formulations with synergistically acting antibiotics. Nisin is a member of the lantibiotic family of antimicrobial peptides that exhibit potent antibacterial activity against many Gram-positive bacteria. Recently we have used bioengineering strategies to enhance the activity of nisin against several high profile targets, including multi-drug resistant clinical pathogens such as methicillin-resistant Staphylococcus aureus, vancomycinresistant enterococci, staphylococci, and streptococci associated with bovine mastitis. We have also identified nisin derivatives with an enhanced ability to impair biofilm formation and to reduce the density of established biofilms of methicillin resistant S. pseudintermedius. The present study was aimed at evaluating the potential of nisin and nisin derivatives to increase the efficacy of conventional antibiotics and to assess the possibility of killing and/or eradicating biofilm-associated cells of a variety of staphylococcal targets. Growth curve-based comparisons established that combinations of derivatives nisin V C penicillin or nisin I4V C chloramphenicol had an enhanced inhibitory effect against S. aureus SA113 and S. pseudintermedius DSM21284, respectively, compared to the equivalent nisin A C antibiotic combinations or when each antimicrobial was administered alone. Furthermore, the metabolic activity of established biofilms treated with nisin V C chloramphenicol and nisin I4V C chloramphenicol combinations revealed a significant decrease in S. aureus SA113 and S. pseudintermedius DSM21284 biofilm viability, respectively, compared to the nisin A C antibiotic combinations as determined by the rapid colorimetric XTT assay. The results indicate that the activities of the nisin derivative and antibiotic combinations represent a significant improvement over that of the wild-type nisin and antibiotic combination and merit further investigation with a view to their use as anti-biofilm agents.
    Funder
    Science Foundation Ireland
    Grant Number
    TIDA14/TIDA/2286); 10/IN.1/B3027; 11/PI/1137; SFI/12/RC/2273
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.3389/fmicb.2016.00508
    Scopus Count
    Collections
    Food Biosciences
    Food Biosciences
    Food Biosciences
    Food Biosciences

    entitlement

     
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.