Research in the ABRD encompasses nutrition, fertility, breeding, health and welfare. Research activities focus on producing profitable animals and the corresponding management strategies to deliver the productivity, sustainability and product quality targets set out in Ireland’s Food Harvest 2020 vision. The ABRD uses a powerful combination of established animal science techniques, as well as cutting-edge molecular and computational biology tools, to answer relevant industry research questions. Our focus is on dairy and beef cattle and sheep. We have developed animal models that are divergent for a range of economically important traits.

Recent Submissions

  • Sharpea and Kandleria are lactic acid producing rumen bacteria that do not change their fermentation products when co-cultured with a methanogen

    Kumar, Sandeep; Treloar, Bryan P.; Teh, Koon Hoong; McKenzie, Catherine M.; Henderson, Gemma; Attwood, Graeme T.; Waters, Sinéad M.; Patchett, Mark L.; Janssen, Peter H.; Teagasc Walsh Fellowship Programme; et al. (Elsevier, 2018-07-25)
    Sharpea and Kandleria are associated with rumen samples from low-methane-emitting sheep. Four strains of each genus were studied in culture, and the genomes of nine strains were analysed, to understand the physiology of these bacteria. All eight cultures grew equally well with d-glucose, d-fructose, d-galactose, cellobiose, and sucrose supplementation. d-Lactate was the major end product, with small amounts of the mixed acid fermentation products formate, acetate and ethanol. Genes encoding the enzymes necessary for this fermentation pattern were found in the genomes of four strains of Sharpea and five of Kandleria. Strains of Sharpea produced traces of hydrogen gas in pure culture, but strains of Kandleria did not. This was consistent with finding that Sharpea, but not Kandleria, genomes contained genes coding for hydrogenases. It was speculated that, in co-culture with a methanogen, Sharpea and Kandleria might change their fermentation pattern from a predominately homolactic to a predominately mixed acid fermentation, which would result in a decrease in lactate production and an increase in formation of acetate and perhaps ethanol. However, Sharpea and Kandleria did not change their fermentation products when co-cultured with Methanobrevibacter olleyae, a methanogen that can use both hydrogen and formate, and lactate remained the major end product. The results of this study therefore support a hypothesis that explains the link between lower methane yields and larger populations of Sharpea and Kandleria in the rumens of sheep.
  • Blood immune transcriptome analysis of artificially fed dairy calves and naturally suckled beef calves from birth to 7 days of age

    Surlis, C.; Earley, Bernadette; McGee, Mark; Keogh, K.; Cormican, Paul; Blackshields, G.; Tiernan, K.; Dunn, A.; Morrison, S.; Arguello, A.; et al. (Nature Publishing Group, 2018-10-18)
    Neonatal calves possess a very immature and naïve immune system and are reliant on the intake of maternal colostrum for passive transfer of immunoglobulins. Variation in colostrum management of beef and dairy calves is thought to affect early immune development. Therefore, the objective of this study was to examine changes in gene expression and investigate molecular pathways involved in the immune-competence development of neonatal Holstein dairy calves and naturally suckled beef calves using next generation RNA-sequencing during the first week of life. Jugular whole blood samples were collected from Holstein (H) dairy calves (n = 8) artificially fed 5% B.W. colostrum, and from beef calves which were the progenies of Charolais-Limousin (CL; n = 7) and Limousin-Friesian beef suckler cows (LF; n = 7), for subsequent RNA isolation. In dairy calves, there was a surge in pro-inflammatory cytokine gene expression possibly due to the stress of separation from the dam. LF calves exhibited early signs of humoral immune development with observed increases in the expression genes coding for Ig receptors, which was not evident in the other breeds by 7 days of age. Immune and health related DEGs identified as upregulated in beef calves are prospective contender genes for the classification of biomarkers for immune-competence development, and will contribute towards a greater understanding of the development of an immune response in neonatal calves.
  • RNA-seq analysis of bovine adipose tissue in heifers fed diets differing in energy and protein content

    Waerp, Hilde K. L.; Waters, Sinead M; McCabe, Matthew S.; Cormican, Paul; Salte, Ragnar; Research Council of Norway; TINE SA Norwegian dairies; Felleskjøpet agricultural cooperative; Animalia AS; 199448 (PLOS, 2018-09-20)
    Adipose tissue is no longer considered a mere energy reserve, but a metabolically and hormonally active organ strongly associated with the regulation of whole-body metabolism. Knowledge of adipose metabolic regulatory function is of great importance in cattle management, as it affects the efficiency and manner with which an animal converts feedstuff to milk, meat and fat. However, the molecular mechanisms regulating metabolism in bovine adipose tissue are still not fully elucidated. The emergence of next-generation sequencing technologies has facilitated the analysis of metabolic function and regulation at the global gene expression level. The aim of this study was to investigate the effect of diets differing in protein and energy density level on gene expression in adipose tissue of growing replacement dairy heifers using next-generation RNA sequencing (RNAseq). Norwegian Red heifers were fed either a high- or low-protein concentrate (HP/LP) and a high- or low-energy roughage (HE/LE) diet from 3 months of age until confirmed pregnancy to give four treatments (viz, HPHE, HPLE, LPHE, LPLE) with different growth profiles. Subcutaneous adipose tissue sampled at 12 months of age was analyzed for gene expression differences using RNAseq. The largest difference in gene expression was found between LPHE and LPLE heifers, for which 1092 genes were significantly differentially expressed, representing an up-regulation of mitochondrial function, lipid, carbohydrate and amino acid metabolism as well as changes in the antioxidant system in adipose tissue of LPHE heifers. Differences between HPHE and HPLE heifers were much smaller, and dominated by genes representing NAD biosynthesis, as was the significantly differentially expressed genes (DEG) common to both HE-LE contrasts. Differences between HP and LP groups within each energy treatment were minimal. This study emphasizes the importance of transcriptional regulation of adipose tissue energy metabolism, and identifies candidate genes for further studies on early-stage obesity and glucose load in dairy cattle.
  • Effect of equine chorionic gonadotropin treatment during a progesterone-based timed artificial insemination program on reproductive performance in seasonal-calving lactating dairy cows

    Randi, Federico; Sánchez, José Maria; Herlihy, Mary M.; Valenza, Alessio; Kenny, David A.; Butler, Stephen T.; Lonergan, Patrick; Department of Agriculture, Food and the Marine; 13S515; 13S528 (Elsevier, 2018-08-23)
    The aim of this study was to investigate the effect of progesterone (P4)-based timed artificial insemination (TAI) programs on fertility in seasonal-calving, pasture-based dairy herds. A total of 1,421 lactating dairy cows on 4 spring-calving farms were stratified based on days in milk (DIM) and parity and randomly allocated to 1 of 3 treatments: (1) control: no hormonal treatment; cows inseminated at detected estrus; (2) P4-Ovsynch: cows received a 7-d P4-releasing intravaginal device (PRID Delta; CEVA Santé Animale, Libourne, France) with 100 μg of a gonadotropin-releasing hormone (GnRH) analog (Ovarelin; CEVA Santé Animale) at PRID insertion, a 25-mg injection of PGF2α (Enzaprost; CEVA Santé Animale) at PRID removal, GnRH at 56 h after device removal and TAI 16 h later; (3) P4-Ovsynch+eCG: the same as P4-Ovsynch, but cows received 500 IU of equine chorionic gonadotropin (eCG; Syncrostim; CEVA Santé Animale) at PRID removal. At 10 d before mating start date (MSD), all cows that were ≥35 DIM were examined by transrectal ultrasound to assess presence or absence of a corpus luteum; body condition score (BCS) was also recorded. Pregnancy diagnosis was performed by transrectal ultrasonography 30 to 35 d after insemination. Overall pregnancy/AI (P/AI) was not different between groups (50.9, 49.8, and 46.3% for control, P4-Ovsynch, and P4-Ovsynch+eCG, respectively) but the 21-d pregnancy rate was increased by the use of synchronization (35.0, 51.7, and 47.2%, respectively). Compared with the control group, synchronization significantly reduced the interval from MSD to conception (34.6, 23.0, and 26.5 d, respectively) and consequently reduced the average days open (98.0, 86.0, and 89.0 d). Across all treatment groups, DIM at the start of synchronization affected P/AI (42.3, 49.5, and 53.9% for <60, 60–80, and >80 DIM, respectively), but neither parity (46.5, 50.4, and 48.4% for parity 1, 2, and ≥3, respectively) nor BCS (44.0, 49.4, and 58.6% for ≤2.50, 2.75–3.25, and ≥3.50, respectively) affected the likelihood of P/AI. Two-way interactions between treatment and DIM, parity, or BCS were not detected. In conclusion, the use of TAI accelerated pregnancy establishment in cows in a pasture-based system by reducing days open, but eCG administration at PRID removal did not affect P/AI.
  • The relationship between serum insulin-like growth factor-1 (IGF-1) concentration and reproductive performance, and genome-wide associations for serum IGF-1 in Holstein cows

    Gobikrushanth, M.; Purfield, Deirdre C; Colazo, M. G.; Wang, Z.; Butler, Stephen T.; Ambrose, D. J.; Growing Forward 2; Alberta Livestock and Meat Agency; Alberta Milk; Teagasc Walsh Fellowship Programme; et al. (Elsevier, 2019-07-19)
    The objectives of this study were to determine (1) factors associated with serum concentration of insulin-like growth factor-1 (IGF-1); (2) the relationship between serum IGF-1 concentration during the first week postpartum and ovarian cyclicity status by 35 d postpartum (DPP); (3) an optimum serum IGF-1 concentration threshold predictive of pregnancy to first artificial insemination (P/AI), including its diagnostic values; (4) the associations among categories of serum IGF-1 concentration and reproductive outcomes (P/AI and pregnancy risk up to 150 and 250 DPP); and (5) single nucleotide polymorphisms (SNP) associated with phenotypic variation in serum IGF-1 concentration in dairy cows. Serum IGF-1 concentration was determined at 7 (±2.4; ±standard error of the mean) DPP in 647 lactating Holstein cows (213 primiparous, 434 multiparous) from 7 herds in Alberta, Canada. The overall mean, median, minimum, and maximum serum IGF-1 concentrations during the first week postpartum were 37.8 (±1.23), 31.0, 20.0, and 225.0 ng/mL, respectively. Herd, age, parity, precalving body condition score, and season of blood sampling were all identified as factors associated with serum IGF-1 concentrations. Although serum IGF-1 concentration during the first week postpartum had no association with ovarian cyclicity status by 35 DPP in primiparous cows, it was greater in cyclic than in acyclic multiparous cows (32.2 vs. 27.4 ng/mL, respectively). The optimum serum IGF-1 thresholds predictive of P/AI were 85.0 ng/mL (sensitivity = 31.9%; specificity = 89.1%) and 31.0 ng/mL (sensitivity = 45.5%; specificity = 66.9%) for primiparous and multiparous cows, respectively. When cows were grouped into either high or low IGF-1 categories (greater or less than or equal to 85.0 ng/mL for primiparous cows and greater or less than or equal to 31.0 ng/mL for multiparous cows, respectively), primiparous cows with high IGF-1 had 4.43 times greater odds of P/AI and a tendency for higher pregnancy risk up to 150 DPP than those with low IGF-1, but not up to 250 DPP. Likewise, multiparous cows with high IGF-1 had 1.61 times greater odds of P/AI than those with low IGF-1. Pregnancy risk up to 150 and 250 DPP, however, did not differ between IGF-1 categories in multiparous cows. Moreover, 37 SNP across 10 Bos taurus autosomes were associated with variation in serum IGF-1 concentration, and 4 previously identified candidate genes related to fertility that were in linkage disequilibrium with some of these SNP were also identified.
  • Characterization of best linear unbiased estimates generated from national genetic evaluations of reproductive performance, survival, and milk yield in dairy cows

    Dunne, F. L.; Kelleher, M. M.; Walsh, S.W.; Berry, Donagh P.; MultiRepro project; Department of Agriculture, Food and the Marine (Elsevier, 2018-05-16)
    Genetic evaluations decompose an observed phenotype into its genetic and nongenetic components; the former are termed BLUP with the solutions for the systematic environmental effects in the statistical model termed best linear unbiased estimates (BLUE). Geneticists predominantly focus on the BLUP and rarely consider the BLUE. The objective of this study, however, was to define and quantify the association between 8 herd-level characteristics and BLUE for 6 traits in dairy herds, namely (1) age at first calving, (2) calving to first service interval (CFS), (3) number of services, (4) calving interval (CIV), (5) survival, and (6) milk yield. Phenotypic data along with the fixed and random effects solutions were generated from the Irish national multi-breed dairy cow fertility genetic evaluations on 3,445,557 cows; BLUE for individual contemporary groups were collapsed into mean herd-year estimates. Data from 5,707 spring-calving herds between the years 2007 and 2016 inclusive were retained; association analyses were undertaken using linear mixed multiple regression models. Pearson coefficient correlations were used to quantify the relationships among individual trait herd-year BLUE, and transition matrices were used to understand the dynamics of mean herd BLUE estimates over years. Based on the mean annual trends in raw, BLUP, and BLUE, it was estimated that BLUE were associated with at least two-thirds of the improvement in CIV and milk production over the past 10 yr. Milk recording herds calved heifers for the first time on average 15 d younger, had an almost 2 d longer CFS but 2.3 d shorter CIV than non-milk-recording herds. Larger herd sizes were associated with worse BLUE for both CFS and CIV. Expanding herds and herds that had the highest proportion of cows born on the farm itself, on average, calved heifers younger and had shorter CIV. By separating the raw performance of a selection of herds into their respective BLUE and BLUP, it was possible to identify herds with inferior management practices that were being compensated by superior genetics; similarly, herds were identified with superior BLUE, but because of their inferior genetic merit, were not reaching their full potential. This suggests that BLUE could have a pivotal role in a tailored decision support tool that would enable producers to focus on the most limiting factor hindering them from achieving their maximum performance.
  • GWAS and eQTL analysis identifies a SNP associated with both residual feed intake and GFRA2 expression in beef cattle

    HIggins, Marc G.; Fitzsimons, Clare; McCLure, Matthew C.; McKenna, Clare; Conroy, Stephen; Kenny, David A.; McGee, MArk; Waters, Sinead M; Morris, Derek W.; Department of Agriculture, Food and the Marine; et al. (Nature Publishing Group, 2018-09-24)
    Residual feed intake (RFI), a measure of feed efficiency, is an important economic and environmental trait in beef production. Selection of low RFI (feed efficient) cattle could maintain levels of production, while decreasing feed costs and methane emissions. However, RFI is a difficult and expensive trait to measure. Identification of single nucleotide polymorphisms (SNPs) associated with RFI may enable rapid, cost effective genomic selection of feed efficient cattle. Genome-wide association studies (GWAS) were conducted in multiple breeds followed by meta-analysis to identify genetic variants associated with RFI and component traits (average daily gain (ADG) and feed intake (FI)) in Irish beef cattle (n = 1492). Expression quantitative trait loci (eQTL) analysis was conducted to identify functional effects of GWAS-identified variants. Twenty-four SNPs were associated (P < 5 × 10−5) with RFI, ADG or FI. The variant rs43555985 exhibited strongest association for RFI (P = 8.28E-06). An eQTL was identified between this variant and GFRA2 (P = 0.0038) where the allele negatively correlated with RFI was associated with increased GFRA2 expression in liver. GFRA2 influences basal metabolic rates, suggesting a mechanism by which genetic variation may contribute to RFI. This study identified SNPs that may be useful both for genomic selection of RFI and for understanding the biology of feed efficiency.
  • Associations between exposure to bovine herpesvirus 1 (BoHV-1) and milk production, reproductive performance, and mortality in Irish dairy herds

    Sayers, RÍona; Irish Dairy Levy (Elsevier, 2016-12-09)
    As cost-benefit analyses are required to prioritize and promote disease control and eradication programs within a jurisdiction, national data relating to disease-related production losses are particularly useful. The objectives of the current study were to use Irish bovine herpesvirus 1 (BoHV-1) prevalence data in dairy herds, obtained by bulk milk sampling on 4 occasions over the 2009 lactation, to document associations between milk production, fertility performance, mortality, and BoHV-1 herd status. Bulk milk (n = 305) antibody ELISA was used to classify farms as positive or negative in terms of endemic BoHV-1. Cow-level (milk parameters only) and herd-level performance data were sourced from the Irish Cattle Breeding Federation. Ordinary linear and negative binomial regressions were used to investigate associations between milk, fertility, and mortality performance and herd-level BoHV-1 results (both categorical and continuous variables). Only slight effects on the rates of carryover cows, nonpregnant cows, and total deaths were highlighted with increasing ELISA sample/positive (%) values (incidence rate ratio = 1.001). Multiparous cows in herds BoHV-1 bulk milk antibody positive recorded a reduction in milk yield per cow per year of 250.9 L in the multivariable linear model. Milk fat and protein yields were also affected by herd BoHV-1 status, again highlighting sub-optimal milk production in BoHV-1 bulk milk-positive herds. The current study has highlighted an economical method of investigating losses due to endemic infection using repeated bulk milk sampling over a single lactation. These data can contribute to analyzing the cost-benefit of applying BoHV-1 control strategies both on farm and at a national level.
  • Effect of stocking rate and animal genotype on dry matter intake, milk production, body weight, and body condition score in spring-calving, grass-fed dairy cows

    Coffey, Emma Louise; Delaby, Luc; Fitzgerald, S.; Galvin, Norann; Pierce, K.M.; Horan, Brendan; Dairy Research Ireland (Elsevier, 2017-06-28)
    The objective of the experiment was to quantify the effect of stocking rate (SR) and animal genotype on milk production, dry matter intake (DMI), energy balance, and production efficiency across 2 consecutive grazing seasons (2014 and 2015). A total of 753 records from 177 dairy cows were available for analysis: 68 Holstein-Friesian and 71 Jersey × Holstein-Friesian (JxHF) cows each year of the experiment under a pasture-based seasonal production system. Animals within each breed group were randomly allocated to 1 of 3 whole-farm SR treatments defined in terms of body weight per hectare (kg of body weight/ha): low (1,200 kg of body weight/ha), medium (1,400 kg of body weight/ha), and high (1,600 kg of body weight/ha), and animals remained in the same SR treatments for the duration of the experiment. Individual animal DMI was estimated 3 times per year at grass using the n-alkane technique: March (spring), June (summer), and September (autumn), corresponding to 45, 111, and 209 d in milk, respectively. The effects of SR, animal genotype, season, and their interactions were analyzed using mixed models. Milk production, body weight, and production efficiency per cow decreased significantly as SR increased due to reduced herbage availability per cow and increased grazing severity. As a percentage of body weight, JxHF cows had higher feed conversion efficiency, higher DMI and milk solids (i.e., kg of fat + kg of protein) production, and also required less energy intake to produce 1 kg of milk solids. The increased production efficiency of JxHF cows at a similar body weight per hectare in the current analysis suggests that factors other than individual cow body weight contribute to the improved efficiency within intensive grazing systems. The results highlight the superior productive efficiency of high genetic potential crossbred dairy cows within intensive pasture-based milk production systems at higher SR where feed availability is restricted.
  • Genetic and nongenetic factors associated with milk color in dairy cows

    Scarso, S.; McParland, S.; Visentin, G.; Berry, Donagh P.; McDermott, A.; De Marchi, M.; European Union (Elsevier, 2017-07-12)
    Milk color is one of the sensory properties that can influence consumer choice of one product over another and it influences the quality of processed dairy products. This study aims to quantify the cow-level genetic and nongenetic factors associated with bovine milk color traits. A total of 136,807 spectra from Irish commercial and research herds (with multiple breeds and crosses) were used. Milk lightness (Lˆ*) , red-green index (aˆ*) and yellow-blue index (bˆ*) were predicted for individual milk samples using only the mid-infrared spectrum of the milk sample. Factors associated with milk color were breed, stage of lactation, parity, milking-time, udder health status, pasture grazing, and seasonal calving. (Co)variance components for Lˆ*,aˆ* , and bˆ* were estimated using random regressions on the additive genetic and within-lactation permanent environmental effects. Greater bˆ* value (i.e., more yellow color) was evident in milk from Jersey cows. Milk Lˆ* increased consistently with stage of lactation, whereas aˆ* increased until mid lactation to subsequently plateau. Milk bˆ* deteriorated until 31 to 60 DIM, but then improved thereafter until the end of lactation. Relative to multiparous cows, milk yielded by primiparae was, on average, lighter (i.e., greater Lˆ* ), more red (i.e., greater aˆ* ), and less yellow (i.e., lower bˆ* ). Milk from the morning milk session had lower Lˆ*,aˆ*, and bˆ* Heritability estimates (±SE) for milk color varied between 0.15 ± 0.02 (30 DIM) and 0.46 ± 0.02 (210 DIM) for Lˆ* , between 0.09 ± 0.01 (30 DIM) and 0.15 ± 0.02 (305 DIM) for aˆ* , and between 0.18 ± 0.02 (21 DIM) and 0.56 ± 0.03 (305 DIM) for bˆ* For all the 3 milk color features, the within-trait genetic correlations approached unity as the time intervals compared shortened and were generally <0.40 between the peripheries of the lactation. Strong positive genetic correlations existed between bˆ* value and milk fat concentration, ranging from 0.82 ± 0.19 at 5 DIM to 0.96 ± 0.01 at 305 DIM and confirming the observed phenotypic correlation (0.64, SE = 0.01). Results of the present study suggest that breeding strategies for the enhancement of milk color traits could be implemented for dairy cattle populations. Such strategies, coupled with the knowledge of milk color traits variation due to nongenetic factors, may represent a tool for the dairy processors to reduce, if not eliminate, the use of artificial pigments during milk manufacturing.
  • Short communication: Uncovering quantitative trait loci associated with resistance to Mycobacterium avium ssp. paratuberculosis infection in Holstein cattle using a high-density single nucleotide polymorphism panel

    Mallikarjunappa, Sanjay; Sargolzaei, M.; Brito, L. F.; Meade, Kieran G; Karrow, N. A.; Pant, S. D.; The Semex Alliance; NSERC; the Graham Centre for Agricultural Innovation; Darcy John O'Sullivan Bequest; et al. (Elsevier, 2018-05-10)
    Mycobacterium avium ssp. paratuberculosis (MAP) is the etiological agent of Johne's disease in cattle. Johne's disease is a disease of significant economic, animal welfare, and public health concern around the globe. Therefore, understanding the genetic architecture of resistance to MAP infection has great relevance to advance genetic selection methods to breed more resistant animals. The objectives of this study were to perform a genome-wide association study of previously analyzed 50K genotypes now imputed to a high-density single nucleotide polymorphism panel (777K), aiming to validate previously reported associations and potentially identify additional single nucleotide polymorphisms associated with antibody response to MAP infection. A principal component regression-based genome-wide association study revealed 15 putative quantitative trait loci (QTL) associated with the MAP infection phenotype (serum or milk ELISA tests) on 9 different chromosomes (Bos taurus autosomes 5, 6, 7, 10, 14, 15, 16, 20, and 21). These results validated previous findings and identified new QTL on Bos taurus autosomes 15, 16, 20, and 21. The positional candidate genes NLRP3, IFi47, TRIM41, TNFRSF18, and TNFRSF4 lying within these QTL were identified. Further functional validation of these genes is now warranted to investigate their roles in regulating the immune response and, consequently, cattle resistance to MAP infection.
  • The relationship between serum anti-Müllerian hormone concentrations and fertility, and genome-wide associations for anti-Müllerian hormone in Holstein cows

    Gobikrushanth, M.; Purfield, Deirdre C; Colazo, M. G.; Butler, Stephen T.; Wang, Z.; Ambrose, D. J.; Growing Forward 2; Alberta Livestock and Meat Agency; Alberta Milk; Teagasc Walsh Fellowship Programme; et al. (Elsevier, 2018-05-07)
    The objectives of this study were to (1) evaluate factors associated with variation in circulating anti-Müllerian hormone (AMH) concentrations, (2) establish an optimum AMH threshold predictive of pregnancy to first artificial insemination (P/AI), (3) examine the relationship between AMH and fertility (P/AI, pregnancy loss between 30 and 60 d after artificial insemination, and pregnancy risk up to 250 d postpartum), and (4) identify quantitative trait loci associated with phenotypic variation of AMH concentrations in dairy cows. Serum AMH concentrations (pg/mL) were determined at 7 ± 2.4 d postpartum in 647 lactating Holstein cows (213 primiparous, 434 multiparous) from 1 research and 6 commercial dairy herds in Alberta, Canada. Of these, 589 cows were genotyped on the 26K Bovine BeadChip (Neogen Inc., Lincoln, NE) and subsequently imputed to the Illumina Bovine High Density BeadChip (Illumina, San Diego, CA) for genome-wide association analysis for variation in serum AMH concentrations. Factors associated with variation in serum AMH concentrations and the relationship between categories of AMH and aforementioned fertility outcomes were evaluated only in a subset of 460 cows that had a complete data set available. The overall mean (±standard error of the mean), median, minimum, and maximum AMH concentrations were 191.1 ± 6.3, 151.7, 13.9, and 1,879.0 pg/mL, respectively. The AMH concentrations were not associated with herd, precalving body condition score, postpartum week, and season of sampling; the lactation number, however, had a quadratic relationship with serum AMH concentrations (116.2, 204.9 204.5, and 157.9 pg/mL for first, second, third, and ≥fourth lactation, respectively). The optimum AMH threshold predictive of P/AI could not be established because the receiver operating characteristic curve analysis model was nonsignificant. Categories of AMH [low (<83.0 pg/mL; n = 92), intermediate (≥83.0 to ≤285.0 pg/mL; n = 276), and high (>285.0 pg/mL; n = 92) based on lowest 20%, intermediate 60%, and highest 20% serum AMH) had no associations with P/AI (34, 43, and 40%), pregnancy loss between 30 and 60 d after artificial insemination (20, 12, and 8%), or pregnancy risk up to 250 d postpartum. One candidate gene associated with AMH production [AMH gene on Bos taurus autosome (BTA) 7] and 4 candidate genes related to embryo development (SCAI and PPP6C genes on BTA11 and FGF18 and EEF2K genes on BTA20 and BTA25, respectively) were in linkage disequilibrium with single nucleotide polymorphisms associated with phenotypic variation in serum AMH in dairy cows.
  • Milk mid-infrared spectral data as a tool to predict feed intake in lactating Norwegian Red dairy cows

    Berry, Donagh P.; Wallén, Sini E.; Prestløkken, E.; Meuwissen, Theodorus H.E.; McParland, Sinead; the Norwegian Research Council; TINE; GENO; 225233/E40 (Elsevier, 2018-03-28)
    Mid-infrared (MIR) spectroscopy of milk was used to predict dry matter intake (DMI) and net energy intake (NEI) in 160 lactating Norwegian Red dairy cows. A total of 857 observations were used in leave-one-out cross-validation and external validation to develop and validate prediction equations using 5 different models. Predictions were performed using (multiple) linear regression, partial least squares (PLS) regression, or best linear unbiased prediction (BLUP) methods. Linear regression was implemented using just milk yield (MY) or fat, protein, and lactose concentration in milk (Mcont) or using MY together with body weight (BW) as predictors of intake. The PLS and BLUP methods were implemented using just the MIR spectral information or using the MIR together with Mcont, MY, BW, or NEI from concentrate (NEIconc). When using BLUP, the MIR spectral wavelengths were always treated as random effects, whereas Mcont, MY, BW, and NEIconc were considered to be fixed effects. Accuracy of prediction (R) was defined as the correlation between the predicted and observed feed intake test-day records. When using the linear regression method, the greatest R of predicting DMI (0.54) and NEI (0.60) in the external validation was achieved when the model included both MY and BW. When using PLS, the greatest R of predicting DMI (0.54) and NEI (0.65) in the external validation data set was achieved when using both BW and MY as predictors in combination with the MIR spectra. When using BLUP, the greatest R of predicting DMI (0.54) in the external validation was when using MY together with the MIR spectra. The greatest R of predicting NEI (0.65) in the external validation using BLUP was achieved when the model included both BW and MY in combination with the MIR spectra or when the model included both NEIconc and MY in combination with MIR spectra. However, although the linear regression coefficients of actual on predicted values for DMI and NEI were not different from unity when using PLS, they were less than unity for some of the models developed using BLUP. This study shows that MIR spectral data can be used to predict NEI as a measure of feed intake in Norwegian Red dairy cattle and that the accuracy is augmented if additional, often available data are also included in the prediction model.
  • Factors associated with profitability in pasture-based systems of milk production

    Hanrahan, L.; McHugh, Noirin; Hennessy, Thia C.; Moran, Brian; Kearney, R.; Wallace, Michael; Shalloo, Laurence (Elsevier, 2018-03-07)
    The global dairy industry needs to reappraise the systems of milk production that are operated at farm level with specific focus on enhancing technical efficiency and competitiveness of the sector. The objective of this study was to quantify the factors associated with costs of production, profitability, and pasture use, and the effects of pasture use on financial performance of dairy farms using an internationally recognized representative database over an 8-yr period (2008 to 2015) on pasture-based systems. To examine the associated effects of several farm system and management variables on specific performance measures, a series of multiple regression models were developed. Factors evaluated included pasture use [kg of dry matter/ha and stocking rate (livestock units/ha)], grazing season length, breeding season length, milk recording, herd size, dairy farm size (ha), farmer age, discussion group membership, proportion of purchased feed, protein %, fat %, kg of milk fat and protein per cow, kg of milk fat and protein per hectare, and capital investment in machinery, livestock, and buildings. Multiple regression analysis demonstrated costs of production per hectare differed by year, geographical location, soil type, level of pasture use, proportion of purchased feed, protein %, kg of fat and protein per cow, dairy farm size, breeding season length, and capital investment in machinery, livestock, and buildings per cow. The results of the analysis revealed that farm net profit per hectare was associated with pasture use per hectare, year, location, soil type, grazing season length, proportion of purchased feed, protein %, kg of fat and protein per cow, dairy farm size, and capital investment in machinery and buildings per cow. Pasture use per hectare was associated with year, location, soil type, stocking rate, dairy farm size, fat %, protein %, kg of fat and protein per cow, farmer age, capital investment in machinery and buildings per cow, breeding season length, and discussion group membership. On average, over the 8-yr period, each additional tonne of pasture dry matter used increased gross profit by €278 and net profit by €173 on dairy farms. Conversely, a 10% increase in the proportion of purchased feed in the diet resulted in a reduction in net profit per hectare by €97 and net profit by €207 per tonne of fat and protein. Results from this study, albeit in a quota limited environment, have demonstrated that the profitability of pasture-based dairy systems is significantly associated with the proportion of pasture used at the farm level, being cognizant of the levels of purchased feed.
  • Plane of nutrition before and after 6 months of age in Holstein-Friesian bulls: II. Effects on metabolic and reproductive endocrinology and identification of physiological markers of puberty and sexual maturation

    Byrne, Colin J; Fair, Seán; English, Anne-Marie; Urh, C.; Sauerwein, H.; Crowe, Mark A; Lonergan, P.; Kenny, David A.; Department of Agriculture, Food and the Marine; 11/S/116 (Elsevier, 2018-02-04)
    The aim of this study was (1) to examine the effect of plane of nutrition during the first and second 6 mo of life on systemic concentrations of reproductive hormones and metabolites in Holstein-Friesian dairy bulls, and (2) to establish relationships with age at puberty and postpubertal semen production potential. Holstein-Friesian bull calves (n = 83) with a mean (standard deviation) age and body weight of 17 (4.4) d and 52 (6.2) kg, respectively, were assigned to a high or low plane of nutrition for the first 6 mo of life. At 24 wk of age, bulls were reassigned, within treatment, either to remain on the same diet or to switch to the opposite diet until puberty, resulting in 4 treatment groups: high-high, high-low, low-low, and low-high. Monthly blood samples were analyzed for metabolites (albumin, urea, total protein, β-hydroxybutyrate, glucose, nonesterified fatty acid, triglycerides and creatinine), insulin, insulin-like growth factor-1, leptin, adiponectin, FSH, and testosterone. A GnRH challenge was carried out at 16 and 32 wk of age (n = 9 bulls per treatment). Blood was collected at 15-min intervals for 165 min, with GnRH administered (0.05 mg/kg of body weight, i.v.) immediately after the third blood sample. Blood samples were subsequently analyzed for LH, FSH, and testosterone. Stepwise regression was used to detect growth and blood measurements to identify putative predictors of age at puberty and subsequent semen quality traits. Metabolic hormones and metabolites, in general, reflected metabolic status of bulls. Although FSH was unaffected by diet, it decreased with age both in monthly samples and following GnRH administration. Testosterone was greater in bulls on the high diet before and after 6 mo of age. Testosterone concentrations increased dramatically after 6 mo of age. Luteinizing hormone was unaffected by diet following GnRH administration but basal serum LH was greater in bulls on a high diet before 6 mo of age. In conclusion, the plane of nutrition offered before 6 mo of age influenced metabolic profiles, which are important for promoting GnRH pulsatility, in young bulls
  • Breeding a better cow—Will she be adaptable?

    Berry, Donagh P. (Elsevier, 2017-12-08)
    Adaption is a process that makes an individual or population more suited to their environment. Long-term adaptation is predicated on ample usable genetic variation. Evolutionary forces influencing the extent and dynamics of genetic variation in a population include random drift, mutation, recombination, selection, and migration; the relative importance of each differs by population (i.e., drift is likely to be more influential in smaller populations) and number of generations exposed to selection (i.e., mutation is expected to contribute substantially to genetic variability following many generations of selection). The infinitesimal model, which underpins most genetic and genomic evaluations, assumes that each quantitative trait is controlled by an infinitely large number of unlinked and non-epistatic loci, each with an infinitely small effect. Under the infinitesimal model, selection is not expected to noticeably alter the allele frequencies, despite a potential substantial change in the population mean; the exception is in the first few generations of selection when genetic variance is expected to decline, after which it stabilizes. Despite the common use of the heritability statistic in quantitative genetics as a descriptor of adaption or response to selection, it is arguably the coefficient of genetic variation that is more informative to gauge adaptation potential and should, therefore, always be cited in such studies; for example, the heritability of fertility traits in dairy cows is generally low, yet the coefficient of genetic variation for most traits is comparable to many other performance traits, thus supporting the observed rapid genetic gain in fertility performance in dairy populations. Empirical evidence from long-term selection studies, across a range of animal and plant species, fails to support the premise that selection will deplete genetic variability. Even after 100 yr (synonymous with 100 generations) of selection in corn for high protein or oil content, there appears to be no obvious plateauing in the response to selection. Although populations in several selection experiments did reach a selection limit after multiple generations of directional selection, this does not equate to an exhaustion of genetic variance; such a declaration is supported by the observed rapid responses to reverse selection once implemented in long-term selection studies. New technologies such as genome-wide enabled selection and genome editing, as well as having the potential to accelerate genetic gain, could also increase the genetic variation, or at least reduce the erosion of genetic variance over time. In conclusion, there is no evidence, either theoretical or empirical, to indicate that dairy cow breeding programs will be unable to adapt to evolving challenges and opportunities, at least not because of an absence of ample genetic variability.
  • Characteristics of feed efficiency within and across lactation in dairy cows and the effect of genetic selection

    Hurley, A. M.; Lopez-Villalobos, N.; McParland, Sinead; Lewis, Eva; Kennedy, Emer; O'Donovan, Michael; Burke, J.L.; Berry, Donagh P.; Irish Department of Agriculture, Food and the Marine; European Union (Elsevier, 2017-11-23)
    The objective of the present study was to investigate the phenotypic inter- and intra-relationships within and among alternative feed efficiency metrics across different stages of lactation and parities; the expected effect of genetic selection for feed efficiency on the resulting phenotypic lactation profiles was also quantified. A total of 8,199 net energy intake (NEI) test-day records from 2,505 lactations on 1,290 cows were used. Derived efficiency traits were either ratio based or residual based; the latter were derived from least squares regression models. Residual energy intake (REI) was defined as NEI minus predicted energy requirements based on lactation performance; residual energy production (REP) was defined as net energy for lactation minus predicted energy requirements based on lactation performance. Energy conversion efficiency was defined as net energy for lactation divided by NEI. Pearson phenotypic correlations among traits were computed across lactation stages and parities, and the significance of the differences was determined using the Fisher r-to-z transformation. Sources of variation in the feed efficiency metrics were investigated using linear mixed models, which included the fixed effects of contemporary group, breed, parity, stage of lactation, and the 2-way interaction of parity by stage of lactation. With the exception of REI, parity was associated with all efficiency and production traits. Stage of lactation, as well as the 2-way interaction of parity by stage of lactation, were associated with all efficiency and production traits. Phenotypic correlations among the efficiency and production traits differed not only by stage of lactation but also by parity. For example, the strong phenotypic correlation between REI and energy balance (EB; 0.89) for cows in parity 3 or greater and early lactation was weaker for parity 1 cows at the same lactation stage (0.81), suggesting primiparous cows use the ingested energy for both milk production and growth. Nonetheless, these strong phenotypic correlations between REI and EB suggested negative REI animals (i.e., more efficient) are also in more negative EB. These correlations were further supported when assessing the effect on phenotypic performance of animals genetically divergent for feed intake and efficiency based on parental average. Animals genetically selected to have lower REI resulted in cows who consumed less NEI but were also in negative EB throughout the entire lactation. Nonetheless, such repercussions of negative EB do not imply that selection for negative REI (as defined here) should not be practiced, but instead should be undertaken within the framework of a balanced breeding objective, which includes traits such as reproduction and health.
  • Establishing blood gas ranges in healthy bovine neonates differentiated by age, sex, and breed type

    Dillane, Patrick; Krump, Lea; Kennedy, A. E.; Sayers, Riona; Sayers, Gearoid (Elsevier, 2018-02-02)
    Calf mortality and morbidity commonly occurs within the first month of life postpartum. Standard health ranges are invaluable aids in diagnostic veterinary medicine to confirm normal or the degree and nature of abnormal parameters in (sub)clinically ill animals. Extensive research has indicated significant differences between the physiologies of neonate and adult cattle, particularly for blood parameters such as pH, base excess, anion gap, and bicarbonate (HCO3−). The objective of this research was to determine the influence of age, sex, and breed type, in addition to environmental factors, on the normal blood gas profiles of neonatal calves, and thus develop a scientifically validated reference range accounting for any significant factors. The study was conducted on healthy neonatal calves (n = 288), and completed over a 2-yr period. Individual calf blood gas analysis was conducted for parameters of pH, base excess, Na+, K+, Ca2+, Cl−, glucose, total hemoglobin, HCO3−, pCO2, anion gap, strong ion difference, and hematocrit levels. Regression procedures examined the combined effect of year, farm, age, breed type, sex, and hours postfeeding on each variable. Significant effects were observed for age, sex, and breed type on several of the blood gas variables. Furthermore, year, farm, and hours postfeeding appeared to have less of an influence on neonatal bovine blood gas profiles. Consequently, specific ranges based on the neonate's age, sex, and breed type will allow for more detailed and accurate diagnosis of health and ill health in neonatal calves.
  • Leukocyte profile, gene expression, acute phase response, and metabolite status of cows with sole hemorrhages

    O'Driscoll, Keelin; McCabe, Matthew; Earley, Bernadette; Marie Curie Intra-European Fellowship; 252611 (Elsevier, 2017-08-23)
    Sole hemorrhages result from disruption to normal claw horn formation and are caused by a variety of internal and external factors. Evidence suggests that they are painful, although they do not usually cause clinical lameness and are difficult to detect by observing cow gait. Little is known about how or whether sole hemorrhages affect the cow systemically. This study compared hematology profile, leukocyte gene expression, and physiological responses of cows with no/mild hemorrhages (category 1; n = 17), moderate hemorrhages (category 2; n = 18), and severe hemorrhages (category 3; n = 12). At approximately 100 d in milk, all cows in the study herd (n = 374) were locomotion scored before hoof examination. The cows included in the study were not clinically lame and had no other hoof disorder. Blood samples were taken from all cows within 24 h of selection. Leukocyte counts were obtained using an automated cell counter, cortisol and dehydroepiandrosterone (DHEA) concentration by ELISA, and plasma haptoglobin, urea, total protein, creatine kinase and glucose were analyzed on a clinical chemistry analyzer. Expression of 16 genes associated with lameness or stress were estimated using real-time quantitative PCR. Data from cows within each category were compared using the Mixed procedure in SAS (version 9.3; SAS Institute Inc., Cary, NC). Fixed effects included hemorrhage severity category and lactation number, with days in milk and body condition score included as covariates. Locomotion score worsened as sole hemorrhage category worsened. Locomotion score of category 1 cows tended to be lower than that of category 2 cows and was lower than that of category 3 cows. The locomotion score of category 3 cows was also greater than that of categories 1 and 2 combined. Category had no effect on leukocyte number, on any of the individual leukocyte cell numbers or percentages, cortisol or DHEA concentration, cortisol:DHEA ratio, or relative expression of any of the genes investigated, and we detected no differences in plasma glucose, protein, or creatine kinase concentrations between categories. However, category 3 cows had greater plasma concentrations of haptoglobin and tended to have lesser concentrations of plasma urea than category 1 and 2 cows. The differences in gait between cows with no or minor sole hemorrhages and cows with severe hemorrhages indicate that hemorrhages may be associated with discomfort or pain. Nevertheless, the only physiological measure that changed with increasing locomotion score was plasma haptoglobin concentration. Haptoglobin has previously been found to be elevated in lame cows, and thus shows promise as a marker for limb pain.
  • A comparison of 4 predictive models of calving assistance and difficulty in dairy heifers and cows

    Fenlon, Caroline; O'Grady, Luke; Mee, John F; Butler, Stephen T.; Doherty, Michael L; Dunnion, John; Dairy Research Ireland (Elsevier, 2017-09-21)
    The aim of this study was to build and compare predictive models of calving difficulty in dairy heifers and cows for the purpose of decision support and simulation modeling. Models to predict 3 levels of calving difficulty (unassisted, slight assistance, and considerable or veterinary assistance) were created using 4 machine learning techniques: multinomial regression, decision trees, random forests, and neural networks. The data used were sourced from 2,076 calving records in 10 Irish dairy herds. In total, 19.9 and 5.9% of calving events required slight assistance and considerable or veterinary assistance, respectively. Variables related to parity, genetics, BCS, breed, previous calving, and reproductive events and the calf were included in the analysis. Based on a stepwise regression modeling process, the variables included in the models were the dam's direct and maternal calving difficulty predicted transmitting abilities (PTA), BCS at calving, parity; calving assistance or difficulty at the previous calving; proportion of Holstein breed; sire breed; sire direct calving difficulty PTA; twinning; and 2-way interactions between calving BCS and previous calving difficulty and the direct calving difficulty PTA of dam and sire. The models were built using bootstrapping procedures on 70% of the data set. The held-back 30% of the data was used to evaluate the predictive performance of the models in terms of discrimination and calibration. The decision tree and random forest models omitted the effect of twinning and included only subsets of sire breeds. Only multinomial regression and neural networks explicitly included the modeled interactions. Calving BCS, calving difficulty PTA, and previous calving assistance ranked as highly important variables for all 4 models. The area under the receiver operating characteristic curve (ranging from 0.64 to 0.79) indicates that all of the models had good overall discriminatory power. The neural network and multinomial regression models performed best, correctly classifying 75% of calving cases and showing superior calibration, with an average error in predicted probability of 3.7 and 4.5%, respectively. The neural network and multinomial regression models developed are both suitable for use in decision-support and simulation modeling.

View more