• Administration of a live culture of Lactococcus lactis DPC 3147 into the bovine mammary gland stimulates the local host immune response, particularly IL-1β and IL-8 gene expression

      Beecher, Christine; Daly, Mairead; Berry, Donagh; Klostermann, Katja; Flynn, James; Meaney, William J; Hill, Colin; McCarthy, Tommie V; Ross, R Paul; Giblin, Linda; et al. (Cambridge University Press: Published for the Institute of Food Research and the Hannah Research Institute, 18/05/2009)
      Mastitis is one of the most costly diseases to the dairy farming industry. Conventional antibiotic therapy is often unsatisfactory for successful treatment of mastitis and alternative treatments are continually under investigation. We have previously demonstrated, in two separate field trials, that a probiotic culture, Lactococcus lactis DPC 3147, was comparable to antibiotic therapy to treat bovine mastitis. To understand the mode of action of this therapeutic, we looked at the detailed immune response of the host to delivery of this live strain directly into the mammary gland of six healthy dairy cows. All animals elicited signs of udder inflammation 7 h post infusion. At this time, clots were visible in the milk of all animals in the investigation. The most pronounced increase in immune gene expression was observed in Interleukin (IL)-1b and IL-8, with highest expression corresponding to peaks in somatic cell count. Infusion with a live culture of a Lc. lactis leads to a rapid and considerable innate immune response.
    • Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle

      Beecher, Christine; Daly, Mairead; Childs, Stuart; Berry, Donagh; Magee, David A; McCarthy, Tommie V; Giblin, Linda (Biomed Central, 05/11/2010)
      Background: Mastitis, an inflammation of the mammary gland, is a major source of economic loss on dairy farms. The aim of this study was to quantify the associations between two previously identified polymorphisms in the bovine toll-like receptor 2 (TLR2) and chemokine receptor 1 (CXCR1) genes and mammary health indictor traits in (a) 246 lactating dairy cow contemporaries representing five breeds from one research farm and (b) 848 Holstein-Friesian bulls that represent a large proportion of the Irish dairy germplasm. To expand the study, a further 14 polymorphisms in immune genes were included for association studies in the bull population. Results: TLR4-2021 associated (P < 0.05) with both milk protein and fat percentage in late lactation (P < 0.01) within the cow cohort. No association was observed between this polymorphism and either yield or composition of milk within the bull population. CXCR1-777 significantly associated (P < 0.05) with fat yield in the bull population and tended to associate (P < 0.1) with somatic cell score (SCS) in the cows genotyped. CD14-1908 A allele was found to associate with increased (P < 0.05) milk fat and protein yield and also tended to associate with increased (P < 0.1) milk yield. A SERPINA1 haplotype with superior genetic merit for milk protein yield and milk fat percentage (P < 0.05) was also identified. Conclusion: Of the sixteen polymorphisms in seven immune genes genotyped, just CXCR1-777 tended to associate with SCS, albeit only in the on-farm study. The lack of an association between the polymorphisms with SCS in the Holstein-Friesian data set would question the potential importance of these variants in selection for improved mastitis resistance in the Holstein-Friesian cow.