• Confirmation of the Dietary Background of Beef from its Stable Isotope Signature

      Moloney, Aidan P; Bahar, Bojlul; Schmidt, Olaf; Scrimgeour, C.M.; Begley, I.S.; Monahan, Frank J (Teagasc, 2009-11-01)
      Consumers are increasingly demanding information on the authenticity and source of the food they purchase. Molecular DNA-based technology allows animal identification, but without certification or a “paper-trail” but does not provide information about feed history or the production system under which the animal was reared. The stable isotopes of chemical elements (e.g.13C/12C, 15N/14N) are naturally present in animal tissue and reflect the isotopic composition of the diet. The overall aim of this project was to determine the feasibility of using the stable isotopic composition as an intrinsic, biochemical marker to gain information about feed components used in the production of beef. Factors likely to affect the isotopic signature such as source of tissue, duration of feeding and production systems were examined. It is expected that this highly innovative and original technique will permit the identification of country of origin and dietary history of beef and so greatly assist efforts to market Irish beef, particularly in lucrative European markets. Sequential sampling and stable isotope analysis of bovine tail hair and hoof revealed that the two tissues can provide a detailed and continuous record of animal dietary history. Because hair can be sampled repeatedly and noninvasively, we anticipate that this approach will also prove useful for the investigation of short-term wildlife movements and changes in dietary preferences.
    • The fatty acid profile and stable isotope ratios of C and N of muscle from cattle that grazed grass or grass/clover pastures before slaughter and their discriminatory potential

      Moloney, Aidan P; O'Riordan, Edward G.; Schmidt, Olaf; Monahan, Frank J (Teagasc (Agriculture and Food Development Authority), Ireland, 2018-11-09)
      Consumption of grazed pasture compared to concentrates results in higher concentrations, in beef muscle, of fatty acids considered to be beneficial to human health. Little information is available on the influence of the type of grazed forage. Our objectives were to determine 1) the effect of inclusion of white clover in a grazing sward on the fatty acid profile of beef muscle and 2) the potential of the fatty acid profile and stable isotope ratios of C and N to discriminate between beef from cattle that grazed grass-only or grass/clover swards before slaughter. A total of 28 spring-born Charolais steers grazed from March until slaughter in October, either on a perennial ryegrass (Lolium perenne L.) sward that received approximately 220 kg N/ha or a perennial ryegrass–white clover (Trifolium repens L.) sward that received 50 kg N/ha. The longissimus muscle from cattle finished on grass/clover had a higher (P < 0.05) proportion of C18:2 and C18:3 but a lower (P < 0.05) proportion of conjugated linoleic acid and δ15N value than animals finished on the grass-only sward. Discriminant analysis using the fatty acid data showed that, after cross-validation, 80.7% of grass/clover and 86.1% of grass-only muscle samples were correctly classified. Discriminant analysis using the stable isotope data showed that, after cross-validation, 95.7% of grass/clover and 86.5% of grass-only muscle samples were correctly classified. Inclusion of white clover in pasture is likely to have little effect on healthiness of meat for consumers. However, changes in fatty acids and stable isotopes can be used to distinguish between grass/clover-fed and grass-only-fed beef.
    • Long-term stability of RNA in post-mortem bovine skeletal muscle, liver and subcutaneous adipose tissues

      Bahar, Bojlul; Monahan, Frank J; Moloney, Aidan P; Schmidt, Olaf; MacHugh, David E; Sweeney, Torres; National Development Plan 2000-2006; Teagasc Walsh Fellowship Programme (Biomed Central, 2007-11-29)
      Background: Recovering high quality intact RNA from post-mortem tissue is of major concern for gene expression studies in animals and humans. Since the availability of post-mortem tissue is often associated with substantial delay, it is important that we understand the temporal variation in the stability of total RNA and of individual gene transcripts so as to be able to appropriately interpret the data generated from such studies. Hence, the objective of this experiment was to qualitatively and quantitatively assess the integrity of total and messenger RNA extracted from bovine skeletal muscle, subcutaneous adipose tissue and liver stored at 4°C at a range of time points up to 22 days post-mortem. These conditions were designed to mimic the environment prevailing during the transport of beef from the abattoir to retail outlets. Results: The 28S and 18S rRNA molecules of total RNA were intact for up to 24 h post-mortem in liver and adipose tissues and up to 8 days post-mortem in skeletal muscle. The mRNA of housekeeping genes (GAPDH and ACTB) and two diet-related genes (RBP5 and SCD) were detectable up to 22 days post-mortem in skeletal muscle. While the mRNA stability of the two housekeeping genes was different in skeletal muscle and liver, they were similar to each other in adipose tissue. After 22 days post-mortem, the relative abundance of RBP5 gene was increased in skeletal muscle and in adipose tissue and decreased in liver. During this period, the relative abundance of SCD gene also increased in skeletal muscle whereas it decreased in both adipose tissue and liver. Conclusion: Stability of RNA in three tissues (skeletal muscle, subcutaneous adipose tissue and liver) subjected to long-term post-mortem storage at refrigeration temperature indicated that skeletal muscle can be a suitable tissue for recovering biologically useful RNA for gene expression studies even if the tissue is subjected to post-mortem storage for weeks, whereas adipose tissue and liver should be processed within 24 hours post-mortem.
    • Meat provenance: Authentication of geographical origin and dietary background of meat

      Monahan, Frank J.; Schmidt, Olaf; Moloney, Aidan P; European Union; Department of Agriculture, Food and the Marine; FOOD-CT-2005–006942; 06/R&D/D/481; Teagasc Walsh Fellowship Programme (Elsevier, 2018-05-30)
      The authenticity of meat is now an important consideration in the multi-step food chain from production of animals on farm to consumer consumption of the final meat product. A range of techniques, involving analysis of elemental and molecular constituents of meat, fingerprint profiling and multivariate statistical analysis exists and these techniques are evolving in the quest to provide robust methods of establishing the dietary background of animals and the geographical origin of the meat derived from them. The potential application to meat authentication of techniques such as stable isotope ratio analysis applied to different animal tissues, measurement in meat of compounds directly derived from the diet of animals, such as fatty acids and fat soluble vitamins, and spectroscopy is explored. Challenges pertaining to the interpretation of data, as they relate to assignment of dietary background or geographical origin, are discussed.