• Accuracy of predicting milk yield from alternative milk recording schemes

      Berry, Donagh P.; Olori, V. E.; Cromie, A.R.; Veerkamp, R. F.; Rath, M.; Dillon, Pat (Cambridge University Press, 2005-02)
      The effect of reducing the frequency of official milk recording and the number of recorded samples per test-day on the accuracy of predicting daily yield and cumulative 305-day yield was investigated. A control data set consisting of 58 210 primiparous cows with milk test-day records every 4 weeks was used to investigate the influence of reduced milk recording frequencies. The accuracy of prediction of daily yield with one milk sample per test-day was investigated using 41 874 testday records from 683 cows. Results show that five or more test-day records taken at 8-weekly intervals (A8) predicted 305-day yield with a high level of accuracy. Correlations between 305-day yield predicted from 4-weekly recording intervals (A4) and from 8-weekly intervals were 0.99, 0.98 and 0.98 for milk, fat and protein, respectively. The mean error in estimating 305-day yield from the A8 scheme was 6.8 kg (s.d. 191 kg) for milk yield, 0.3 kg (s.d. 10 kg) for fat yield, and −0.3 kg (s.d. 7 kg) for protein yield, compared with the A4 scheme. Milk yield and composition taken during either morning (AM) or evening (PM) milking predicted 24-h yield with a high degree of accuracy. Alternating between AM and PM sampling every 4 weeks predicted 305-day yield with a higher degree of accuracy than either all AM or all PM sampling. Alternate AM-PM recording every 4 weeks and AM + PM recording every 8 weeks produced very similar accuracies in predicting 305-day yield compared with the official AM + PM recording every 4 weeks.
    • Adding value to cull cow beef

      O'Donovan, Michael; Minchin, William; Buckley, Frank; Kenny, David; Shalloo, Laurence (Teagasc, 2009-08-01)
      This project addressed the prospects of increasing the value of cull cow beef and examined the potential of a number of different management and dietary strategies. In Ireland, the national cow herd contributes 350,000 animals to total beef production annually, which represents 22% of all cattle slaughtered (DAF, 2007). A dominant feature of beef production in Ireland is the disposal of cows from the dairy and beef industries, the time of year at which culling occurs influences the number of cows available for slaughter. Suitability of a cow for slaughter is generally not a consideration for dairy or beef farmers.
    • Additive genetic, non-additive genetic and permanent environmental effects for female reproductive performance in seasonal calving dairy females

      Kelleher, M.M.; Buckley, Frank; Evans, R.D.; Berry, Donagh P.; Department of Agriculture, Food and the Marine (Teagasc (Agriculture and Food Development Authority), Ireland, 2016-09-08)
      Excellent reproductive performance (i.e. 365-day calving interval) is paramount to herd profit in seasonal-calving dairy systems. Reproductive targets are currently not being achieved in Irish dairy herds. Furthermore, most research on the genetics of reproductive performance in dairy cattle has focused primarily on lactating cows and relatively few studies have attempted to quantify the genetic contribution to differences in reproductive performance in nulliparae. The objective of the present study was to estimate the contribution of both the additive and non-additive genetic components, as well as the permanent environmental component, to phenotypic variation in the reproductive traits in nulliparous, primiparous and multiparous seasonal-calving dairy females. Reproductive phenotypes were available on up to 202,525 dairy females. Variance components were estimated using (repeatability where appropriate) linear animal mixed models; fixed effects included in the mixed models were contemporary group, parity (where appropriate), breed proportion, inter-breed specific heterosis coefficients and inter-breed specific recombination loss coefficients. Heritability of the reproductive traits ranged from 0.004 (pregnancy rate to first service) to 0.17 (age at first service in nulliparae), while repeatability estimates for the reproductive traits in cows ranged from 0.01 (calving interval) to 0.11 (pregnant in the first 42 days of the breeding season). Breed-specific heterosis regression coefficients suggest that, relative to the parental mean, a first-cross Holstein–Jersey crossbred was almost 7 days younger at first calving, had a 9-day shorter calving interval, a 6 percentage unit greater pregnancy rate in the first 42 days of the breeding season and a 3 percentage unit greater survival rate to next lactation. Heifer calving rate traits were strongly genetically correlated with age at first calving (–0.97 to –0.66) and calving rate in the first 42 days of the calving season for first parity cows (0.77 to 0.56), but genetic correlations with other cow reproductive traits were weak and inconsistent. Calving interval was strongly genetically correlated with the majority of the cow traits; 56%, 40%, and 92% of the genetic variation in calving interval was explained by calving to the first service interval, number of services and pregnant in the first 42 days of the breeding season, respectively. Permanent environmental correlations between the reproductive performance traits were generally moderate to strong. The existence of contributions from non-additive genetic and permanent environmental effects to phenotypic differences among cows suggests the usefulness of such information to rank cows on future expected performance; this was evidenced by a stronger correlation with future reproductive performance for an individual cow index that combined additive genetic, non-additive genetic and permanent environmental effects compared to an index based solely on additive genetic effects (i.e. estimated breeding values).
    • Administration of a live culture of Lactococcus lactis DPC 3147 into the bovine mammary gland stimulates the local host immune response, particularly IL-1β and IL-8 gene expression

      Beecher, Christine; Daly, Mairead; Berry, Donagh P.; Klostermann, Katja; Flynn, James; Meaney, William J; Hill, Colin; McCarthy, Tommie V.; Ross, R Paul; Giblin, Linda (Cambridge University Press: Published for the Institute of Food Research and the Hannah Research Institute, 2009-05-18)
      Mastitis is one of the most costly diseases to the dairy farming industry. Conventional antibiotic therapy is often unsatisfactory for successful treatment of mastitis and alternative treatments are continually under investigation. We have previously demonstrated, in two separate field trials, that a probiotic culture, Lactococcus lactis DPC 3147, was comparable to antibiotic therapy to treat bovine mastitis. To understand the mode of action of this therapeutic, we looked at the detailed immune response of the host to delivery of this live strain directly into the mammary gland of six healthy dairy cows. All animals elicited signs of udder inflammation 7 h post infusion. At this time, clots were visible in the milk of all animals in the investigation. The most pronounced increase in immune gene expression was observed in Interleukin (IL)-1b and IL-8, with highest expression corresponding to peaks in somatic cell count. Infusion with a live culture of a Lc. lactis leads to a rapid and considerable innate immune response.
    • Alterations in hepatic miRNA expression during negative energy balance in postpartum dairy cattle

      Fatima, Attia; Waters, Sinead M.; O'Boyle, Padraig; Seoighe, Cathal; Morris, Dermot G (Biomed Central, 2014-01-15)
      Abstract Background Negative energy balance (NEB), an altered metabolic state, occurs in early postpartum dairy cattle when energy demands to support lactation exceed energy intake. During NEB the liver undergoes oxidative stress and increased breakdown of fatty acids accompanied by changes in gene expression. It is now known that micro RNAs (miRNA) can have a role in mediating such alterations in gene expression through repression or degradation of target mRNAs. miRNA expression is known to be altered by metabolism and environmental factors and miRNAs are implicated in expression modulation of metabolism related genes. Results miRNA expression was profiled in the liver of moderate yielding dairy cattle under severe NEB (SNEB) and mild NEB (MNEB) using the Affymetrix Gene Chip miRNA_2.0 array with 679 probe sets for Bos-taurus miRNAs. Ten miRNAs were found to be differentially expressed using the ‘samr’ statistical package (delta = 0.6) at a q-value FDR of < 12%. Five miRNAs including miR-17-5p, miR-31, miR-140, miR-1281 and miR-2885 were validated using RT-qPCR, to be up-regulated under SNEB. Liver diseases associated with these miRNAs include non-alcoholic fatty liver (NAFLD) and hepatocellular carcinoma (HCC). miR-140 and miR-17-5p are known to show differential expression under oxidative stress. A total of 32 down-regulated putative target genes were also identified among 418 differentially expressed hepatic genes previously reported for the same animal model. Among these, GPR37 (G protein-coupled receptor 37), HEYL (hairy/enhancer-of-split related with YRPW motif-like), DNJA1, CD14 (Cluster of differentiation 14) and GNS (glucosamine (N-acetyl)-6-sulfatase) are known to be associated with hepatic metabolic disorders. In addition miR-140 and miR-2885 have binding sites on the most down-regulated of these genes, FADS2 (Fatty acid desaturase 2) which encodes an enzyme critical in lipid biosynthesis. Furthermore, HNF3-gamma (Hepatocyte nuclear factor 3-gamma), a hepatic transcription factor (TF) that is involved in IGF-1 expression regulation and maintenance of glucose homeostasis is a putative target of miR-31. Conclusions This study shows that SNEB affects liver miRNA expression and these miRNAs have putative targets in hepatic genes down-regulated under this condition. This study highlights the potential role of miRNAs in transcription regulation of hepatic gene expression during SNEB in dairy cattle. Background Negative energy balance (NEB), an altered metabolic state, occurs in early postpartum dairy cattle when energy demands to support lactation exceed energy intake. During NEB the liver undergoes oxidative stress and increased breakdown of fatty acids accompanied by changes in gene expression. It is now known that micro RNAs (miRNA) can have a role in mediating such alterations in gene expression through repression or degradation of target mRNAs. miRNA expression is known to be altered by metabolism and environmental factors and miRNAs are implicated in expression modulation of metabolism related genes. Results miRNA expression was profiled in the liver of moderate yielding dairy cattle under severe NEB (SNEB) and mild NEB (MNEB) using the Affymetrix Gene Chip miRNA_2.0 array with 679 probe sets for Bos-taurus miRNAs. Ten miRNAs were found to be differentially expressed using the ‘samr’ statistical package (delta = 0.6) at a q-value FDR of < 12%. Five miRNAs including miR-17-5p, miR-31, miR-140, miR-1281 and miR-2885 were validated using RT-qPCR, to be up-regulated under SNEB. Liver diseases associated with these miRNAs include non-alcoholic fatty liver (NAFLD) and hepatocellular carcinoma (HCC). miR-140 and miR-17-5p are known to show differential expression under oxidative stress. A total of 32 down-regulated putative target genes were also identified among 418 differentially expressed hepatic genes previously reported for the same animal model. Among these, GPR37 (G protein-coupled receptor 37), HEYL (hairy/enhancer-of-split related with YRPW motif-like), DNJA1, CD14 (Cluster of differentiation 14) and GNS (glucosamine (N-acetyl)-6-sulfatase) are known to be associated with hepatic metabolic disorders. In addition miR-140 and miR-2885 have binding sites on the most down-regulated of these genes, FADS2 (Fatty acid desaturase 2) which encodes an enzyme critical in lipid biosynthesis. Furthermore, HNF3-gamma (Hepatocyte nuclear factor 3-gamma), a hepatic transcription factor (TF) that is involved in IGF-1 expression regulation and maintenance of glucose homeostasis is a putative target of miR-31. Conclusions This study shows that SNEB affects liver miRNA expression and these miRNAs have putative targets in hepatic genes down-regulated under this condition. This study highlights the potential role of miRNAs in transcription regulation of hepatic gene expression during SNEB in dairy cattle.
    • Analysis of DRB1 exon 2 genotyping by STR size analysis in Suffolk and Texel sheep breeds

      Sayers, Gearoid; Mitchel, S; Ryan, Marion T; Stear, M.J.; Hanrahan, James P; Sweeney, Torres (Teagasc (Agriculture and Food Development Authority), Ireland, 2004)
      Alleles of the DRB1 exon 2 locus of the major histocompatibility complex have recently been associated with genetic resistance to gastrointestinal nematodes in sheep. While sequence-based typing is the standard method for allele discrimination, a rapid, high throughput method for DRB1 exon 2 genotyping is required if such information is to be incorporated into national breeding programmes. Previous studies have highlighted a simple tandem repeat (STR) located within intron 2 of the DRB1 gene, which could potentially be used to accurately assess the allele present within the adjacent exon 2. The aims of this study were firstly to compare two methods of STR analysis, Genescan™ and autoradiography, and secondly to investigate if STR analysis of DRB1 intron 2 could be used to accurately assess the profile of DRB1 exon 2. Six DRB1 exon 2 alleles were identified by sequence-based typing in Suffolk (n = 31) and eight in Texel (n = 60) sheep. The results indicated that Genescan™ was a more accurate method of STR analysis than autoradiography. The expected 1:1 correspondence between STR size, analysed by Genescan™ and DRB1 exon 2 allele, determined by sequence-based typing, was not observed. However, the correspondence was found to be degenerate, whereby some alleles were associated with two STR sizes. Thus, irrespective of the STR size identified, STR analysis by Genescan™ identified the correct allele in all cases within both populations of animals studied. However, the Genescan™ method of allele identification cannot be used for Suffolk × Texel crossbred progeny or in other breeds where the relationship between STR size and DRB1 exon 2 allele is not known.
    • Analysis of Johne’s disease ELISA status and associated performance parameters in Irish dairy cows

      Kennedy, A. E; Byrne, N.; Garcia, A. B; O’Mahony, J.; Sayers, Riona (2016-03-02)
      Background Infection with Mycobacterium avium subspecies paratuberculosis (MAP) has been associated with reductions in milk production in dairy cows and sub optimal fertility. The aim of this study was to highlight the production losses associated with testing MAP ELISA positive in Irish dairy cows. Secondary objectives included investigation of risk factors associated with testing MAP ELISA positive. A survey of management practices on study farms was also conducted, with examination of associations between management practices and herd MAP status. Blood samples were collected from 4188 breeding animals on 22 farms. Samples were ELISA tested using the ID Screen Paratuberculosis Indirect Screening Test. Production parameters examined included milk yield, milk fat, milk protein, somatic cell count, and calving interval. The association between MAP ELISA status and production data was investigated using multi-level mixed models. Logistic regression was used to identify risk factors for testing JD blood ELISA positive at individual cow level and to identify associations between farm management practices and herd MAP status. Results Data were available for 3528 cows. The apparent prevalence recorded was 7.4 %. Mixed model analysis revealed no statistically significant association between testing MAP ELISA positive and dairy cow production parameters. Risk factors associated with testing positive included larger sized herds being over twice more likely to test positive than smaller herds (OR 2.4 P = <0.001). Friesians were less likely to test positive relative to other breeds. A number of study farmers were engaged in management practices that have previously been identified as high risk for MAP transmission e.g., 73.1 % pooled colostrum and 84.6 % of study farmers used the calving area to house sick animals throughout the year. No significant associations however, were identified between farm management practices and herd MAP status. Conclusion No production losses were identified; however an apparent prevalence of 7.4 % was recorded. With the abolition of EU milk quotas herd size in Ireland is expanding, as herds included in this study were larger than the national average, results may be indicative of future JD levels if no JD control programmes are implemented to minimise transmission.
    • Animal Transport: Developing optimum animal handling procedures and effective transport strategies in the food production chain to improve animal welfare and food quality

      Earley, Bernadette; Murray, Margaret; Prendiville, Daniel J. (Teagasc, 2007-01-01)
      A series of studies were performed to investigate the effect of transport on liveweight, physiological and haematological responses of cattle. The first study was carried out over a 6 week period in the Spring of 2004. Eighty-four continental x bulls (mean weight (s.d.) 367 (35) kg), naïve to transport, were randomly assigned to one of six journey (J) times of 0, 6, 9, 12, 18 and 24h transport at a stocking density of 1.02m2/bull. Blood samples were collected by jugular venipuncture before, immediately after and at 1, 2, 4, 6, 8, 12 and 24h and bulls were weighed before, immediately after, and at 4, 12 and 24h. Bulls travelling for 6h (280 km), 9h (435 km), 12h (582 km), 18h (902 km) and 24h (1192 km) lost 4.7, 4.5, 5.7 (P=0.05), 6.6 (P=0.05) and 7.5 (P=0.05) percentage liveweight compared with baseline. During the 24h recovery period liveweight was regained to pre-transport levels. Lymphocyte percentages were lower (P=0.001) and neutrophil percentages were higher (P=0.05) in all animals. Blood protein and creatine kinase, glucose and NEFA concentrations were higher (P=0.05) in the bulls following transport and returned to baseline within 24h. In conclusion, liveweight and some physiological and haematological responses of bulls returned to pre-transport levels within 24h having had access to feed and water. Transport of bulls from 6 – 24hours did not impact negatively on animal welfare.
    • Anthelmintic-resistant nematodes in Irish commercial sheep flocks- the state of play

      Good, Barbara; Hanrahan, James P; de Waal, Daniel Theodorus; Patten, Thomas; Kinsella, Andrew; Lynch, Ciaran Oliver (Biomed Central, 2012-12-22)
      Anthelmintic resistance has been reported in most sheep producing countries. Prior to the mid 1990s, reports of anthelmintic resistance in Ireland were sparse and focused on benzimidazole, one of the three classes of anthelmintic available during this period. This evidence for efficacy issues on Irish farms combined with awareness that anthelmintic resistance was increasingly being reported in other countries prompted the need for more comprehensive investigations on Irish farms. Faecal egg count reduction and micro-agar larval development tests were employed to investigate resistance to benzimidazole, levamisole and macrocyclic lactone. There is compelling evidence for resistance to both benzimidazole (>88% of flocks) and levamisole (>39% of flocks). Resistance of nematode populations to macrocyclic lactone was suspected on a small number of farms (11%) but needs to be confirmed. The recent introduction of two new classes of anthelmintics, after over a 25 year interval, together with the evidence that anthelmintic resistance is reported within a relatively short time following the introduction of a new anthelmintic compound means that the challenge to the industry is immediate. Actions are urgently required to manage anthelmintic resistance so as to prolong the lifespan of anthelmintics.
    • Anthelmintic-resistant nematodes in Irish commercial sheep flocks- the state of play

      Good, Barbara; Hanrahan, James P; de Waal, Daniel Theodorus; Patten, Thomas; Kinsella, Andrew; Lynch, Ciaran Oliver (Biomed Central, 2012-12-22)
      Anthelmintic resistance has been reported in most sheep producing countries. Prior to the mid 1990s, reports of anthelmintic resistance in Ireland were sparse and focused on benzimidazole, one of the three classes of anthelmintic available during this period. This evidence for efficacy issues on Irish farms combined with awareness that anthelmintic resistance was increasingly being reported in other countries prompted the need for more comprehensive investigations on Irish farms. Faecal egg count reduction and micro-agar larval development tests were employed to investigate resistance to benzimidazole, levamisole and macrocyclic lactone. There is compelling evidence for resistance to both benzimidazole (>88% of flocks) and levamisole (>39% of flocks). Resistance of nematode populations to macrocyclic lactone was suspected on a small number of farms (11%) but needs to be confirmed. The recent introduction of two new classes of anthelmintics, after over a 25 year interval, together with the evidence that anthelmintic resistance is reported within a relatively short time following the introduction of a new anthelmintic compound means that the challenge to the industry is immediate. Actions are urgently required to manage anthelmintic resistance so as to prolong the lifespan of anthelmintics.
    • The application of transcriptomic data in the authentication of beef derived from contrasting production systems

      Sweeney, Torres; Lejeune, Alex; Moloney, Aidan P; Monahan, Frank J; Gettigan, Paul M; Downey, Gerard; Park, Stephen D E; Ryan, Marion T (Biomed Central, 2016-09-21)
      Background Differences between cattle production systems can influence the nutritional and sensory characteristics of beef, in particular its fatty acid (FA) composition. As beef products derived from pasture-based systems can demand a higher premium from consumers, there is a need to understand the biological characteristics of pasture produced meat and subsequently to develop methods of authentication for these products. Here, we describe an approach to authentication that focuses on differences in the transcriptomic profile of muscle from animals finished in different systems of production of practical relevance to the Irish beef industry. The objectives of this study were to identify a panel of differentially expressed (DE) genes/networks in the muscle of cattle raised outdoors on pasture compared to animals raised indoors on a concentrate based diet and to subsequently identify an optimum panel which can classify the meat based on a production system. Results A comparison of the muscle transcriptome of outdoor/pasture-fed and Indoor/concentrate-fed cattle resulted in the identification of 26 DE genes. Functional analysis of these genes identified two significant networks (1: Energy Production, Lipid Metabolism, Small Molecule Biochemistry; and 2: Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry), both of which are involved in FA metabolism. The expression of selected up-regulated genes in the outdoor/pasture-fed animals correlated positively with the total n-3 FA content of the muscle. The pathway and network analysis of the DE genes indicate that peroxisome proliferator-activated receptor (PPAR) and FYN/AMPK could be implicit in the regulation of these alterations to the lipid profile. In terms of authentication, the expression profile of three DE genes (ALAD, EIF4EBP1 and NPNT) could almost completely separate the samples based on production system (95 % authentication for animals on pasture-based and 100 % for animals on concentrate- based diet) in this context. Conclusions The majority of DE genes between muscle of the outdoor/pasture-fed and concentrate-fed cattle were related to lipid metabolism and in particular β-oxidation. In this experiment the combined expression profiles of ALAD, EIF4EBP1 and NPNT were optimal in classifying the muscle transcriptome based on production system. Given the overall lack of comparable studies and variable concordance with those that do exist, the use of transcriptomic data in authenticating production systems requires more exploration across a range of contexts and breeds.
    • Association between body condition score and live weight in pasture-based Holstein-Friesian dairy cows

      Berry, Donagh P.; Macdonald, Kevin A.; Penno, John W.; Roche, John R. (Cambridge University Press: Published for the Institute of Food Research and the Hannah Research Institute, 2006-11)
      The objective was to quantify the strength of the relationship between body condition score (BCS) and live weight (LW) in pasture-based Holstein-Friesian dairy cattle, and to determine the kg LW per unit BCS. A total of 26021 test-day records with information on both BCS (1–10 scale, where 1 is emaciated and 10 is obese) and LW across 1110 lactations from one research farm were used in the analysis. Correlation and regression analyses were used to determine the degree of association between BCS and LW in different parities, stages of the inter-calving interval and years. Correlations between BCS and LW were relatively consistent, with the mean correlation between BCS and LW across all data of 0·55 implying that differences in BCS explain approximately 30% of the variation in LW. Significantly different regressions of LW on BCS were present within stage of inter-calving interval by parity subclasses. Excluding calving, LW per unit BCS varied from 17 kg (early to mid lactation in parity 1) to 36 kg (early lactation in parity 4 and 5). However, LW per unit BCS was greatest at calving varying from 44 kg in first parity animals to 62 kg in second parity animals. On average, 1 BCS unit equated to 31 kg LW across all data.
    • The association between herd- and cow-level factors and somatic cell count of Irish dairy cows

      McParland, Sinead; O'Brien, Bernadette; McCarthy, J. (Teagasc (Agriculture and Food Development Authority), Ireland, 2013)
      Somatic cell count (SCC) is an indicator of both udder health and milk quality and is measured at an animal level through national milk recording schemes. The objective of this study was to assess the animal and herd factors contributing to elevated SCC (i.e. poorer milk quality). Test day records (n = 2,658,928) from 519,456 cow lactations obtained between 2007 and 2011 were included in the analyses. Herd factors tested included the geographical region of the herd and production system operated (spring calving or mixed calving system). Animal factors tested included breed, parity and age nested within parity. Four definitions of normalised SCC (i.e. SCS) were considered: 1) average test-day SCS within a 24 hour period (TD_SCS), 2) maximum SCS (peak_SCS), 3) minimum SCS (min_SCS), and 4) average SCS (avg_SCS) recorded across cow lactation; in addition, the proportion of test day records with an SCC count >200,000 (prop_200) or >250,000 (prop_250) within cow lactation were included. Following adjustment for fixed effects, average TD_SCS was 179,308 cells per mL while avg_SCS, and average min_SCS and peak_SCS were 119,481, 50,992 and 298,813 cells per mL, respectively. All animal and herd factors had a significant effect on SCC. Older animals, animals which were younger at calving than contemporaries and Holstein animals had higher SCC than younger alternative breed animals who calved at the median age. In addition, mixed calving production systems and herds in Connaught had higher SCC than spring calving herds in the other regions of Ireland.
    • Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires

      Giblin, Linda; Butler, Stephen T.; Kearney, Breda M.; Waters, Sinead M.; Callanan, Michael J.; Berry, Donagh P. (Biomed Central, 2010-07-29)
      Background: Leptin modulates appetite, energy expenditure and the reproductive axis by signalling via its receptor the status of body energy stores to the brain. The present study aimed to quantify the associations between 10 novel and known single nucleotide polymorphisms in genes coding for leptin and leptin receptor with performance traits in 848 Holstein-Friesian sires, estimated from performance of up to 43,117 daughter-parity records per sire. Results: All single nucleotide polymorphisms were segregating in this sample population and none deviated (P > 0.05) from Hardy-Weinberg equilibrium. Complete linkage disequilibrium existed between the novel polymorphism LEP-1609, and the previously identified polymorphisms LEP-1457 and LEP-580. LEP-2470 associated (P < 0.05) with milk protein concentration and calf perinatal mortality. It had a tendency to associate with milk yield (P < 0.1). The G allele of LEP-1238 was associated (P < 0.05) with reduced milk fat concentration, reduced milk protein concentration, longer gestation length and tended to associate (P < 0.1) with an increase in calving difficulty, calf perinatal mortality and somatic cells in the milk. LEP-963 exhibited an association (P < 0.05) with milk fat concentration, milk protein concentration, calving difficulty and gestation length. It also tended to associate with milk yield (P < 0.1). The R25C SNP associated (P < 0.05) with milk fat concentration, milk protein concentration, calving difficulty and length of gestation. The T allele of the Y7F SNP significantly associated with reduced angularity (P < 0.01) and reduced milk protein yield (P < 0.05). There was also a tendency (P < 0.1) for Y7F to associate with increased body condition score, reduced milk yield and shorter gestation (P < 0.1). A80V associated with reduced survival in the herd (P < 0.05). Conclusions Several leptin polymorphisms (LEP-2470, LEP-1238, LEP-963, Y7F and R25C) associated with the energetically expensive process of lactogenesis. Only SNP Y7F associated with energy storage. Associations were also observed between leptin polymorphisms and calving difficulty, gestation length and calf perinatal mortality. The lack of an association between the leptin variants investigated with calving interval in this large data set would question the potential importance of these leptin variants, or indeed leptin, in selection for improved fertility in the Holstein-Friesian dairy cow.
    • Associations between herd size, rate of expansion and production, breeding policy and reproduction in spring-calving dairy herds

      Jago, J. G.; Berry, Donagh P. (Cambridge University Press, 2011-04)
      Dairy herd size is expected to increase in many European countries, given the recent policy changes within the European Union. Managing more cows may have implications for herd performance in the post-quota era. The objective of this study was to characterise spring-calving herds according to size and rate of expansion, and to determine trends in breeding policy, reproduction and production performance, which will inform industry of the likely implications of herd expansion. Performance data from milk recording herds comprising 775 795 lactations from 2555 herds for the years 2004 to 2008 inclusive were available from the Irish Cattle Breeding Federation. Herds were classified into Small (average of 37 cows), Medium (average of 54 cows) and Large (average of 87 cows) and separately into herds that were not expanding (Nil expansion), herds expanding on average by three cows per year (Slow expansion) and herds expanding on average by eight cows per year (Rapid expansion). There was no association between rate of expansion and 305-day fat and protein yield. However, 305-day milk yield decreased and milk protein and fat percentage increased with increasing rate of expansion. There were no associations between herd size and milk production except for protein and fat percentage, which increased with increasing herd size. Average parity number of the cows decreased as rate of expansion increased and tended to decrease as herd size increased. In rapidly expanding herds, cow numbers were increased by purchasing more cattle. The proportion of dairy sires relative to beef sires used in the breeding programme of expanding herds increased and there was more dairy crossbreeding, albeit at a low rate. Similarly, large herds were using more dairy sires and fewer beef sires. Expanding herds and large herds had superior reproductive performance relative to non-expanding and small herds. Animals in expanding herds calved for the first time at a younger age, had a shorter calving interval and were submitted for breeding by artificial insemination at a higher rate. The results give confidence to dairy producers likely to undergo significant expansion post-quota such that, despite managing more cows, production and reproductive performance need not decline. The management skills required to achieve these performance levels need investigation.
    • Associations between the K232A polymorphism in the diacylglycerol-O-transferase 1 (DGAT1) gene and performance in Irish Holstein-Friesian dairy cattle

      Berry, Donagh P.; Howard, Dawn J.; O'Boyle, P.; Waters, Sinead M.; Kearney, J.F.; McCabe, M. (Teagasc, Oak Park, Carlow, Ireland, 2010)
      Selection based on genetic polymorphisms requires accurate quantification of the effect or association of the polymorphisms with all traits of economic importance. The objective of this study was to estimate, using progeny performance data on 848 Holstein-Friesian bulls, the association between a non-conservative alanine to lysine amino acid change (K232A) in exon 8 of the diacylglycerol-O-transferase 1 (DGAT1) gene and milk production and functionality in the Irish Holstein-Friesian population. The DGAT1 gene encodes the diacylglycerol-O-transferase microsomal enzyme necessary to catalyze the final step in triglyceride synthesis. Weighted mixed model methodology, accounting for the additive genetic relationships among animals, was used to evaluate the association between performance and the K232A polymorphism. The minor allele frequency (K allele) was 0.32. One copy of the K allele was associated (P < 0.001) with 77 kg less milk yield, 4.22 kg more fat yield, 0.99 kg less protein yield, and 1.30 and 0.28 g/kg greater milk fat and protein concentration, respectively; all traits were based on predicted 305-day production across the first five lactations. The K232A polymorphism explained 4.8%, 10.3% and 1.0% of the genetic variance in milk yield, fat yield and protein yield, respectively. There was no association between the K232A polymorphism and fertility, functional survival, calving performance, carcass traits, or any conformation trait with the exception of rump width and carcass conformation. Using the current economic values for the milk production traits in the Irish total merit index, one copy of the K allele is worth €5.43 in expected profitability of progeny. Results from this study will be useful in quantifying the cost-benefit of including the K232A polymorphism in the Irish national breeding programme.
    • Avian Resistance to Campylobacter jejuni Colonization Is Associated with an Intestinal Immunogene Expression Signature Identified by mRNA Sequencing

      Connell, Sarah; Meade, Kieran G; Allan, Brenda; Lloyd, Andrew T.; Kenny, Elaine; Cormican, Paul; Morris, Derek W.; Bradley, Daniel G.; O'Farrelly, Cliona (PLOS, 2012-08-01)
      Campylobacter jejuni is the most common cause of human bacterial gastroenteritis and is associated with several post-infectious manifestations, including onset of the autoimmune neuropathy Guillain-Barré syndrome, causing significant morbidity and mortality. Poorly-cooked chicken meat is the most frequent source of infection as C. jejuni colonizes the avian intestine in a commensal relationship. However, not all chickens are equally colonized and resistance seems to be genetically determined. We hypothesize that differences in immune response may contribute to variation in colonization levels between susceptible and resistant birds. Using high-throughput sequencing in an avian infection model, we investigate gene expression associated with resistance or susceptibility to colonization of the gastrointestinal tract with C. jejuni and find that gut related immune mechanisms are critical for regulating colonization. Amongst a single population of 300 4-week old chickens, there was clear segregation in levels of C. jejuni colonization 48 hours post-exposure. RNAseq analysis of caecal tissue from 14 C. jejuni-susceptible and 14 C. jejuni-resistant birds generated over 363 million short mRNA sequences which were investigated to identify 219 differentially expressed genes. Significantly higher expression of genes involved in the innate immune response, cytokine signaling, B cell and T cell activation and immunoglobulin production, as well as the renin-angiotensin system was observed in resistant birds, suggesting an early active immune response to C. jejuni. Lower expression of these genes in colonized birds suggests suppression or inhibition of a clearing immune response thus facilitating commensal colonization and generating vectors for zoonotic transmission. This study describes biological processes regulating C. jejuni colonization of the avian intestine and gives insight into the differential immune mechanisms incited in response to commensal bacteria in general within vertebrate populations. The results reported here illustrate how an exaggerated immune response may be elicited in a subset of the population, which alters host-microbe interactions and inhibits the commensal state, therefore having wider relevance with regard to inflammatory and autoimmune disease.
    • Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome.

      Morine, Melissa J; McMonagle, Jolene; Toomey, Sinead; Reynolds, Clare M; Moloney, Aidan P; Gormley, Isobel C; Gaora, Peadar Ó; Roche, Helen M. (Biomed Central, 2010-10-07)
      Background Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Results Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways - selenoamino acid metabolism and steroid biosynthesis - illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease.
    • Biologic response of animals to husbandry stress with implications for biomedical models

      Earley, Bernadette; Buckham-Sporer, Kelly; Gupta, Sandeep; Pang, Wanyong; Ting, Simon (Dove Press, 2010-08-04)
      The quality of life of animals is defined by a range of parameters including health, physiology, and behavior. Stress is defined as any damaging strain, force, or agent which stimulates a physiologic defense reaction and is capable under certain circumstances of producing pathologic lesions. Disruption to normal homeostasis can impinge on other biologic processes such as metabolism, cardiovascular activity, immune function, and behavior. In general, chronic stress is considered to have a greater potential impact on animal health and welfare than acute stress, because the animals are exposed and reacting to the stressor(s) for longer periods, thereby causing prolonged disruption to homeostasis and related biologic processes. Impaired coping responses may trigger specific alterations in behavior, organ damage, reduced performance, increased susceptibility to disease, and subfertility. At a molecular level, immune function is mediated by the release of cytokines, nonantibody messenger molecules from a variety of cells of the immune system and from other cells, such as endothelial cells. Biochemical alterations in immune function are, in part, induced by plasma hormone concentration changes elicited by a stressor subsequent to activation of the sympathetic nervous system, the sympathetic adrenomedullary axis, and the hypothalamo–pituitary–adrenocortical axis.
    • Body and carcass measurements, carcass conformation and tissue distribution of high dairy genetic merit Holstein, standard dairy genetic merit Friesian and Charolais x Holstein-Friesian male cattle

      McGee, Mark; Keane, Michael G.; Neilan, R.; Moloney, Aidan P; Caffrey, P.J. (Teagasc, Oak Park, Carlow, Ireland, 2007)
      The increased proportion of Holstein genes in the dairy herd may have undesirable consequences for beef production in Ireland. A total of 72 spring-born calves, (24 Holstein (HO), 24 Friesian (FR) and 24 Charolais X Holstein-Friesian (CH)) were reared from calfhood to slaughter. Calves were artificially reared indoors and spent their first summer at pasture following which they were assigned to a 3 breeds (HO, FR and CH) 2 production systems (intensive 19-month bull beef and extensive 25-month steer beef) 2 slaughter weights (560 and 650 kg) factorial experiment. Body measurements of all animals were recorded at the same time before the earliest slaughter date. After slaughter, carcasses were graded and measured and the pistola hind-quarter was separated into fat, bone and muscle. HO had significantly higher values for withers height, pelvic height and chest depth than FR, which in turn had higher values than CH. HO had a longer back and a narrower chest than either FR or CH, which were not significantly different. Carcass length and depth, pistola length, and leg length were 139.2, 134.4 and 132.0 (s.e. 0.81), 52.1, 51.3 and 47.7 (s.e. 0.38), 114.4, 109.0 and 107.0 (s.e. 0.65) and 76.7, 71.9 and 71.4 (s.e. 0.44) cm for HO, FR and CH, respectively. Breed differences in pistola tissue distribution between the joints were small and confined to the distal pelvic limb and ribs. There were relatively small breed differences in the distribution of pistola muscle weight between individual muscles. Body measurements were significantly greater for animals on the intensive system (bulls) than the extensive system (steers) in absolute terms, but the opposite was so when they were expressed relative to live weight. The only significant difference in relative carcass measurements between the production systems was for carcass depth, which was lower for the intensive compared with the extensive system. Increasing slaughter weight significantly increased all carcass measurements in absolute terms but reduced them relative to weight. It is concluded that there were large differences between the breed types in body and carcass measurements, and hence in carcass shape and compactness but differences in tissue distribution were small.