• Characteristics of feed efficiency within and across lactation in dairy cows and the effect of genetic selection

      Hurley, A. M.; Lopez-Villalobos, N.; McParland, Sinead; Lewis, Eva; Kennedy, Emer; O'Donovan, Michael; Burke, Jennifer L.; Berry, Donagh; Irish Department of Agriculture, Food and the Marine; European Union (Elsevier, 2017-11-23)
      The objective of the present study was to investigate the phenotypic inter- and intra-relationships within and among alternative feed efficiency metrics across different stages of lactation and parities; the expected effect of genetic selection for feed efficiency on the resulting phenotypic lactation profiles was also quantified. A total of 8,199 net energy intake (NEI) test-day records from 2,505 lactations on 1,290 cows were used. Derived efficiency traits were either ratio based or residual based; the latter were derived from least squares regression models. Residual energy intake (REI) was defined as NEI minus predicted energy requirements based on lactation performance; residual energy production (REP) was defined as net energy for lactation minus predicted energy requirements based on lactation performance. Energy conversion efficiency was defined as net energy for lactation divided by NEI. Pearson phenotypic correlations among traits were computed across lactation stages and parities, and the significance of the differences was determined using the Fisher r-to-z transformation. Sources of variation in the feed efficiency metrics were investigated using linear mixed models, which included the fixed effects of contemporary group, breed, parity, stage of lactation, and the 2-way interaction of parity by stage of lactation. With the exception of REI, parity was associated with all efficiency and production traits. Stage of lactation, as well as the 2-way interaction of parity by stage of lactation, were associated with all efficiency and production traits. Phenotypic correlations among the efficiency and production traits differed not only by stage of lactation but also by parity. For example, the strong phenotypic correlation between REI and energy balance (EB; 0.89) for cows in parity 3 or greater and early lactation was weaker for parity 1 cows at the same lactation stage (0.81), suggesting primiparous cows use the ingested energy for both milk production and growth. Nonetheless, these strong phenotypic correlations between REI and EB suggested negative REI animals (i.e., more efficient) are also in more negative EB. These correlations were further supported when assessing the effect on phenotypic performance of animals genetically divergent for feed intake and efficiency based on parental average. Animals genetically selected to have lower REI resulted in cows who consumed less NEI but were also in negative EB throughout the entire lactation. Nonetheless, such repercussions of negative EB do not imply that selection for negative REI (as defined here) should not be practiced, but instead should be undertaken within the framework of a balanced breeding objective, which includes traits such as reproduction and health.
    • Development of an efficient milk production profile of the Irish dairy Industry

      Shalloo, Laurence; Dillon, Pat; Wallace, Michael; Dairy Levy Research Trust; European Union (Teagasc, 2008-07)
      Fluctuation around milk price will be the biggest factor that the dairy industry will experience over the next number of years. This fluctuation is being driven by fluctuation on the world dairy markets. In the past, when intervention was a much bigger feature of the CAP regime, the fluctuation in world markets had little effect on the EU price. This was because the Intervention system bought product from the market when prices were depressed and placed products on the world market when the price rose. This in effect meant that the CAP regime was having a regulatory effect on the world market as well as the EU markets. An example of the type of fluctuation observed on the world market can be gleamed from the Fonterra milk price in 2006-2007 ($4.50/kg (MS) milk solid) versus 2007-2008 ($7.90/kg MS). This corresponds to a 76% increase in price in 1 year. For the Dairy Industry in Ireland to prosper under these conditions all sectors will be required to be as efficient as possible from the farm, processing and marketing sectors. This report deals with; (1) Milk payment (2) Optimum milk production systems and (3) Seasonality of milk supply. (1) Milk payment systems in Ireland currently do not adequately reward high solids quality milk. Virtually all milk payment systems include a positive constant which reward the production of volume rather than the production of protein and fat kilograms. The A+B-C system of milk payment would adequately reward the production of protein and fat while at the same time correcting for the volume related processing costs. (2) Optimum systems of milk production will be built around the maximization of grass utilization in the future. Grazed grass is the cheapest feed that can be fed to dairy cows. Stocking rates nationally are 1.74cows/Ha around the milking platform and therefore when dairy farms are expanding they should do so by increasing stocking rate. The inclusion of supplementary feeds will reduce profitability for the vast majority of dairy farmers and could only possibly lead to increases in profitability when coupled increases in stocking rate. (3) Grass based systems while substantially reducing costs at farm level result in a seasonal milk supply profile. This results in a reduced capacity utilization of the milk processing facilities as well as restricted product port folio. However the production of Winter milk will lead to significant cost increases at farm level and should only be encouraged if the specific product produced would be sufficient to cover the additional costs associated with over winter production. Within spring calving systems milk payment systems should be used to encourage an efficient milk supply profile with a mean compact calving date of mid February.
    • Evaluation of Lolium perenne L. cv. AberDart and AberDove for silage production

      Conaghan, Patrick; O'Kiely, Padraig; Howard, H.; O'Mara, Frank P.; Halling, M.A.; European Union; Teagasc Walsh Fellowship Programme; QLK5-CT-2001-0498 (Teagasc, Oak Park, Carlow, Ireland, 2008)
      The objective of this study was to assess the value, for silage production, of intermediateheading Lolium perenne L. cultivars, AberDart and AberDove (diploid), bred for increased water-soluble carbohydrate (WSC) concentrations, relative to four control cultivars (Fennema, AberElan and Spelga (diploid), and Greengold (tetraploid)). Cultivars were evaluated for forage dry matter (DM) yield, ground cover and indirect laboratory measures of nutritional value and ensilability over 3 harvest years within intensive silage-production systems. AberDove was the most desirable diploid for silage production producing on average 316 kg/ha higher (2%) DM yield per annum, having a 10 g/kg higher (1%) dry matter digestibility (DMD) and, based primarily on a 6 g/L higher (19%) concentration of WSC expressed in the aqueous extract (WSCAE), offered the greatest potential to produce well preserved silage. Ensiling AberDart compared to the diploid controls offered a slightly greater probability of producing well preserved silage based on a modest increase of 2 g/L (6%) in WSCAE concentration. The dilemma for silage production is that AberDart, on average produced 558 kg/ha less (4%) DM yield per annum but had a greater (1%) DMD of 6 g/kg than the diploid controls. The tetraploid control had, on average, 13 and 8 g/kg higher (2% and 1%, respectively) DMD than AberDart and AberDove, but at a cost of lower ensilability with lower (6% and 21%, respectively) WSCAE values of 2 and 6 g/L. In its favour, the tetraploid control outyielded AberDart by, on average, 917 kg/ha DM per annum (7%) and produced comparable yields to AberDove. Final ground cover ratings were high (≥ 95%) for all cultivars. Evaluation of nutritional value and ensilability offers further grounds to differentiate and select cultivars for animal production potential.
    • Grazing and ensiling of energy-rich grasses with elevated sugar contents for the sustainable production of ruminant livestock (Acronym: SweetGrass)

      O'Kiely, Padraig; Conaghan, Patrick; Howard, H.; Moloney, Aidan P; Black, Alistair D; European Union; QLK5-CT-2001-0498 (Teagasc, 2005-09-01)
      Permanent grassland dominates the Irish landscape and for many decades perennial ryegrasses have been the main constituent in seed mixtures for grassland.
    • Plant traits of grass and legume species for flood resilience and N2O mitigation

      Oram, Natalie J.; Sun, Yan; Abalos, Diego; Groenigen, Jan Willem; Hartley, Sue; De Deyn, Gerlinde B.; European Union; Teagasc; 754380 (Wiley, 2021-07-11)
      1. Flooding threatens the functioning of managed grasslands by decreasing primary productivity and increasing nitrogen losses, notably as the potent greenhouse gas nitrous oxide (N2O). Sowing species with traits that promote flood resilience and mitigate flood-induced N2O emissions within these grasslands could safeguard their productivity while mitigating nitrogen losses. We tested how plant traits and resource acquisition strategies could predict flood resilience and N2O emissions of 12 common grassland species (eight grasses and four legumes) grown in field soil in monocultures in a 14-week greenhouse experiment. We found that grasses were more resistant to flooding while legumes recovered better. Resource-conservative grass species had higher resistance while resource-acquisitive grasses species recovered better. Resilient grass and legume species lowered cumulative N2O emissions. Grasses with lower inherent leaf and root δ13C (and legumes with lower root δ13C) lowered cumulative N2O emissions during and after the flood. Our results highlight the differing responses of grasses with contrasting resource acquisition strategies, and of legumes to flooding. Combining grasses and legumes based on their traits and resource acquisition strategies could increase the flood resilience of managed grasslands, and their capability to mitigate flood-induced N2O emissions. A free Plain Language Summary can be found within the Supporting Information of this article.