• The effect of target postgrazing height on sward clover content, herbage yield, and dairy production from grass-white clover pasture

      Phelan, Paul; Casey, Imelda A.; Humphreys, James; Department of Agriculture, Food and the Marine; Teagasc Walsh Fellowship Programme; RSF 07-511 (Elsevier, 2013-01-16)
      White clover (Trifolium repens) is an important legume for grazed grassland that can increase the profitability and environmental sustainability of milk production. Previous experiments on mown grass-clover plots suggest that low postgrazing heights (PGH) can increase sward clover content and herbage production. However, this has not been tested in actual strip or rotational grazing systems with dairy cows. Furthermore, lowering PGH in grass-only swards (typically perennial ryegrass without white clover) has previously been associated with reduced milk yields per cow. The objective of this experiment was to investigate the effect of PGH by dairy cows on clover content, herbage production, and milk production from strip-grazed grass-white clover swards in Ireland. Three target PGH treatments of 4, 5, and 6 cm were in place for entire grazing seasons (February to November) for 3 consecutive years (2007 to 2009). Each treatment had a mean of 21 Holstein-Friesian dairy cows that strip-grazed a mean annual area of 10.2 ha. Postgrazing height was measured twice a day with a rising plate meter, and cows were moved to the next strip once the target PGH was reached. Annual fertilizer nitrogen input was 90 kg of N/ha for each treatment. The PGH treatment did not significantly affect annual milk yield (6,202 kg/cow), solids-corrected milk yield (6,148 kg/cow), fat, protein, or lactose yields (265, 222, and 289 kg/cow, respectively), cow liveweight (592 kg) or body condition score (3.01). The PGH treatment also had no significant effect on sward white clover content (196 g/kg). However, herbage production of both grass and clover were significantly higher with the 4-cm PGH treatment compared with the 6-cm treatment. Mean annual herbage yields were 11.1, 10.2, and 9.1 t of organic matter (OM)/ha for the 4-, 5-, and 6-cm PGH treatments, respectively. The lower herbage production in the 6-cm PGH treatment resulted in lower annual silage production, greater housing requirements, and a substantially higher net silage deficit (−1,917 kg of OM/cow) compared with the 5- or 4-cm treatments (−868 and −192 kg of OM/cow, respectively). Grazing to a PGH of 4 cm is therefore recommended for grass-white clover swards.
    • Grazing and ensiling of energy-rich grasses with elevated sugar contents for the sustainable production of ruminant livestock (Acronym: SweetGrass)

      O'Kiely, Padraig; Conaghan, Patrick; Howard, H.; Moloney, Aidan P; Black, Alistair D; European Union; QLK5-CT-2001-0498 (Teagasc, 2005-09-01)
      Permanent grassland dominates the Irish landscape and for many decades perennial ryegrasses have been the main constituent in seed mixtures for grassland.
    • Incorporating white clover (Trifolium repens L.) into perennial ryegrass (Lolium perenne L.) swards receiving varying levels of nitrogen fertilizer: Effects on milk and herbage production

      Egan, Michael; Galvin, Norann; Hennessy, Deirdre; Teagasc Walsh Fellowship Programme; Irish Dairy Levy (Elsevier, 2018-02-04)
      White clover (Trifolium repens L.; clover) can offer a superior nutritional feed compared with perennial ryegrass (Lolium perenne L.; PRG) and offers an additional or alternative source (or both) of N for herbage production. The objective of this study was to investigate the effect of including clover into PRG swards receiving 150 (Cl150) or 250 kg of N/ha (Cl250) compared with a PRG-only sward receiving 250 kg of N/ha (Gr250) on herbage production, milk production, and herbage dry matter intake (DMI) in an intensive grass-based spring calving milk production system over 2 full lactations. A farm systems experiment was established in February 2013, and conducted over 2 grazing seasons [2013 (yr 1) and 2014 (yr 2)]. In February 2013 (yr 1), 42 Holstein-Friesian spring-calving dairy cows, and in February 2014 (yr 2), 57 Holstein-Friesian spring-calving dairy cows were allocated to graze the Cl150, Cl250, and Gr250 swards (n = 14 in yr 1 and n = 19 in yr 2) from February to November, at a stocking rate of 2.74 cows/ha. Herbage DMI was estimated twice in yr 1 (May and September) and 3 times in yr 2 (May, July, and September). Treatment did not have a significant effect on annual herbage production. Sward clover content was greater on the Cl150 treatment than the Cl250 treatment. The cows grazing both clover treatments (Cl250 and Cl150) produced more milk than the cows grazing Gr250 from June until the end of the grazing season. A significant treatment by measurement period interaction was observed on total DMI. In May, the cows on the Cl250 treatment had the greatest DMI. In July, the cows on the clover treatments had greater DMI than those on the Gr250 treatment, whereas in September, the cows on the Cl150 treatment had the lowest DMI. In conclusion, including clover in a PRG sward grazed by spring-calving dairy cows can result in increased animal performance, particularly in the second half of lactation. Reducing N fertilizer application to 150 kg of N/ha on grass-clover swards did not reduce herbage production compared with grass-only swards receiving 250 kg of N/ha. White clover can play an integral role in intensive grazing systems in terms of animal performance and herbage production.
    • Using variable importance measures to identify a small set of SNPs to predict heading date in perennial ryegrass.

      Byrne, Stephen; Conaghan, Patrick; Barth, Susanne; Arojju, Sai Krishna; Casler, Michael; Michel, Thibauld; Velmurugan, Janaki; Milbourne, Dan; E.U. Marie Skłodowska-Curie Fellowship; Teagasc Walsh Fellowship Programme; et al. (Nature, 2017-06-15)
      Prior knowledge on heading date enables the selection of parents of synthetic cultivars that are well matched with respect to time of heading, which is essential to ensure plants put together will cross pollinate. Heading date of individual plants can be determined via direct phenotyping, which has a time and labour cost. It can also be inferred from family means, although the spread in days to heading within families demands roguing in first generation synthetics. Another option is to predict heading date from molecular markers. In this study we used a large training population consisting of individual plants to develop equations to predict heading date from marker genotypes. Using permutation-based variable selection measures we reduced the marker set from 217,563 to 50 without impacting the predictive ability. Opportunities exist to develop a cheap assay to sequence a small number of regions in linkage disequilibrium with heading date QTL in thousands of samples. Simultaneous use of these markers in non-linkage based marker-assisted selection approaches, such as paternity testing, should enhance the utility of such an approach.