• Pasture allowance, duration, and stage of lactation—Effects on early and total lactation animal performance

      Claffey, A.; Delaby, L.; Lewis, E.; Boland, T.M.; Kennedy, Emer; Dairy Levy (American Dairy Science Association, 2019-10)
      Pasture availability in early spring can be limited due to climatic effects on grass production, increasing the likelihood of feed deficits in early lactation of spring-calving pasture-based systems. We hypothesized that restricting pasture allowance (PA) when animals are at peak milk production will have more negative implications on milk production compared with restricting animals before this period. A total of 105 cows were assigned to 1 of 7 grazing treatments from March 14 to October 31, 2016 (33 wk). The control treatment was offered a PA to achieve a postgrazing sward height > 3.5 cm and mean pasture allowance of 15.5 kg of dry matter per cow. The remaining treatments were offered a PA representing 60% of that offered to the control for a duration of 2 or 6 wk from March 14 (mid-March; MMx2 and MMx6), March 28 (end of March; EMx2 and EMx6), or April 11 (mid-April; MAx2 and MAx6). Within grazing treatment, animals were also assigned to 1 of 2 calving dates (early and late) based on days in milk (DIM) on March 14. Early calved (EC) cows were ≥36 DIM, while late calved (LC) were ≤35 DIM. Restricting PA for 2 and 6 wk reduced daily milk yield (−1.6 and −2.2 kg/cow, respectively), cumulative milk protein yield (−4.0 and −6.3 kg/cow, respectively), and cumulative milk solids yield (−5.8 and −9.5 kg/cow, respectively) in the first 10 wk of the experiment. Daily milk yield was similar across the treatments at the end of the 33-wk period (16.8 kg/cow, average of all treatments), as was daily milk solids yield (1.40 kg/cow). Cows in the EC group produced less milk over the first 10 wk of the experiment (20.0 kg/cow per day) compared with the LC animals (22.1 kg/cow per day). However, body weight was greater (+15 kg/cow) in the EC animals compared with the LC, while body condition score was similar (2.85). This outcome indicates that animals that are restricted later in early lactation (circa onset of peak milk production) partition a greater proportion of available energy to maintenance, resulting in greater losses in milk production. These data indicate that despite the immediate reduction in milk production, restricting intake of grazing cows to 80% of that required to achieve spring grazing targets for postgrazing sward height for up to 6 wk may be used as a method of managing short-term pasture deficits on farm with minimal effects on total lactation performance.
    • Pasture Feeding Changes the Bovine Rumen and Milk Metabolome

      O’Callaghan, Tom; Vázquez-Fresno, Rosa; Serra-Cayuela, Arnau; Dong, Edison; Mandal, Rupasri; Hennessy, Deirdre; McAuliffe, Stephen; Dillon, Pat; Wishart, David; Stanton, Catherine; et al. (MDPI AG, 2018-04-06)
      The purpose of this study was to examine the effects of two pasture feeding systems—perennial ryegrass (GRS) and perennial ryegrass and white clover (CLV)—and an indoor total mixed ration (TMR) system on the (a) rumen microbiome; (b) rumen fluid and milk metabolome; and (c) to assess the potential to distinguish milk from different feeding systems by their respective metabolomes. Rumen fluid was collected from nine rumen cannulated cows under the different feeding systems in early, mid and late lactation, and raw milk samples were collected from ten non-cannulated cows in mid-lactation from each of the feeding systems. The microbiota present in rumen liquid and solid portions were analysed using 16S rRNA gene sequencing, while 1H-NMR untargeted metabolomic analysis was performed on rumen fluid and raw milk samples. The rumen microbiota composition was not found to be significantly altered by any feeding system in this study, likely as a result of a shortened adaptation period (two weeks’ exposure time). In contrast, feeding system had a significant effect on both the rumen and milk metabolome. Increased concentrations of volatile fatty acids including acetic acid, an important source of energy for the cow, were detected in the rumen of TMR and CLV-fed cows. Pasture feeding resulted in significantly higher concentrations of isoacids in the rumen. The ruminal fluids of both CLV and GRS-fed cows were found to have increased concentrations of p-cresol, a product of microbiome metabolism. CLV feeding resulted in increased rumen concentrations of formate, a substrate compound for methanogenesis. The TMR feeding resulted in significantly higher rumen choline content, which contributes to animal health and milk production, and succinate, a product of carbohydrate metabolism. Milk and rumen-fluids were shown to have varying levels of dimethyl sulfone in each feeding system, which was found to be an important compound for distinguishing between the diets. CLV feeding resulted in increased concentrations of milk urea. Milk from pasture-based feeding systems was shown to have significantly higher concentrations of hippuric acid, a potential biomarker of pasture-derived milk. This study has demonstrated that 1H-NMR metabolomics coupled with multivariate analysis is capable of distinguishing both rumen-fluid and milk derived from cows on different feeding systems, specifically between indoor TMR and pasture-based diets used in this study.
    • PastureBase Ireland: A grassland decision support system and national database

      Hanrahan, Liam; Geoghegan, Anne; O'Donovan, Michael; Griffith, Vincent; Ruelle, Elodie; Wallace, Michael; Shalloo, Laurence (Elsevier BV, 2017-04-15)
      PastureBase Ireland (PBI) is a web-based grassland management application incorporating a dual function of grassland decision support and a centralized national database to collate commercial farm grassland data. This database facilitates the collection and storage of vast quantities of grassland data from grassland farmers. The database spans across ruminant grassland enterprises – dairy, beef and sheep. To help farmers determine appropriate actions around grassland management, we have developed this data informed decision support tool to function at the paddock level. Individual farmers enter data through the completion of regular pasture cover estimations across the farm, allowing the performance of individual paddocks to be evaluated within and across years. To evaluate the PBI system, we compared actual pasture cut experimental data (Etesia cuts) to PBI calculated outputs. We examined three comparisons, comparing PBI outputs to actual pasture cut data, for individual DM yields at defoliation (Comparison 1), for cumulative annual DM yields including silage data (Comparison 2) and, for cumulative annual DM yields excluding silage data (Comparison 3). We found an acceptable accuracy between PBI outputs and pasture cut data when statistically analyzed using relative prediction error and concordance correlation coefficients for the measurement of total annual DM yield (Comparison 2), with a relative prediction error of 15.4% and a concordance correlation coefficient of 0.85. We demonstrated an application of the PBI system through analysis of commercial farm data across two years (2014–2015) for 75 commercial farms who actively use the system. The analysis showed there was a significant increase in DM yield from 2014 to 2015. The results indicated a greater variation in pasture growth across paddocks within farms than across farms.
    • PastureBase Ireland: A grassland decision support system and national database

      Hanrahan, Liam; Geoghegan, Anne; O'Donovan, Michael; Griffith, Vincent; Ruelle, Elodie; Wallace, Michael; Shalloo, Laurence (Elsevier, 2017-03-22)
      PastureBase Ireland (PBI) is a web-based grassland management application incorporating a dual function of grassland decision support and a centralized national database to collate commercial farm grassland data. This database facilitates the collection and storage of vast quantities of grassland data from grassland farmers. The database spans across ruminant grassland enterprises – dairy, beef and sheep. To help farmers determine appropriate actions around grassland management, we have developed this data informed decision support tool to function at the paddock level. Individual farmers enter data through the completion of regular pasture cover estimations across the farm, allowing the performance of individual paddocks to be evaluated within and across years. To evaluate the PBI system, we compared actual pasture cut experimental data (Etesia cuts) to PBI calculated outputs. We examined three comparisons, comparing PBI outputs to actual pasture cut data, for individual DM yields at defoliation (Comparison 1), for cumulative annual DM yields including silage data (Comparison 2) and, for cumulative annual DM yields excluding silage data (Comparison 3). We found an acceptable accuracy between PBI outputs and pasture cut data when statistically analyzed using relative prediction error and concordance correlation coefficients for the measurement of total annual DM yield (Comparison 2), with a relative prediction error of 15.4% and a concordance correlation coefficient of 0.85. We demonstrated an application of the PBI system through analysis of commercial farm data across two years (2014–2015) for 75 commercial farms who actively use the system. The analysis showed there was a significant increase in DM yield from 2014 to 2015. The results indicated a greater variation in pasture growth across paddocks within farms than across farms.
    • Plant traits of grass and legume species for flood resilience and N2O mitigation

      Oram, Natalie J.; Sun, Yan; Abalos, Diego; Groenigen, Jan Willem; Hartley, Sue; De Deyn, Gerlinde B.; European Union; Teagasc; 754380 (Wiley, 2021-07-11)
      1. Flooding threatens the functioning of managed grasslands by decreasing primary productivity and increasing nitrogen losses, notably as the potent greenhouse gas nitrous oxide (N2O). Sowing species with traits that promote flood resilience and mitigate flood-induced N2O emissions within these grasslands could safeguard their productivity while mitigating nitrogen losses. We tested how plant traits and resource acquisition strategies could predict flood resilience and N2O emissions of 12 common grassland species (eight grasses and four legumes) grown in field soil in monocultures in a 14-week greenhouse experiment. We found that grasses were more resistant to flooding while legumes recovered better. Resource-conservative grass species had higher resistance while resource-acquisitive grasses species recovered better. Resilient grass and legume species lowered cumulative N2O emissions. Grasses with lower inherent leaf and root δ13C (and legumes with lower root δ13C) lowered cumulative N2O emissions during and after the flood. Our results highlight the differing responses of grasses with contrasting resource acquisition strategies, and of legumes to flooding. Combining grasses and legumes based on their traits and resource acquisition strategies could increase the flood resilience of managed grasslands, and their capability to mitigate flood-induced N2O emissions. A free Plain Language Summary can be found within the Supporting Information of this article.
    • Prediction of cull cow carcass characteristics from live weight and body condition score measured pre slaughter

      Minchin, William; Buckley, Frank; Kenny, David A.; Keane, Michael G.; Shalloo, Laurence; O'Donovan, Michael (Teagasc, Oak Park, Carlow, Ireland, 2009)
      A study was conducted to provide information on the degree of carcass finish of Irish cull cows and to investigate the usefulness of live animal measurements for the prediction beef breeds (albeit with a moderate R2 value compared to the carcass weight prediction) using objective, non-intrusive and easily measured live animal measurements, should be of benefit to farmers finishing cull cows in Ireland. of cull cow carcass characteristics. Live weight (LW) and body condition score (BCS) were recorded on cows entering an Irish commercial slaughter facility between September and November, 2005. Data pertaining to sire breed, age and carcass characteristics were collected and subsequently collated for each cow. For analysis, cows (n = 2163) were subdivided into three breed categories: dairy breed sired by Holstein/ Friesian (FR), sired by early-maturing beef breeds (EM) and sired by late-maturing beef breeds (LM). The proportion of cows slaughtered at the desired (TARGET) carcass standard (cold carcass weight ≥ 272 kg, carcass conformation class ≥ P+ and carcass fat class ≥ 3) was low (on average 0.30), but did differ (P < 0.001) between the dairy and beef breed categories (0.22, 0.47 and 0.53 for FR, EM and LM categories, respectively). Regression procedures were used to develop equations to predict cold carcass weight, carcass conformation score, carcass fat score and proportion in the TARGET category from LW and BCS. Equations predicting cold carcass weight had high R2 values for all breed categories (0.81, 0.85 and 0.79 for the FR, EM and LM, respectively). Equations predicting carcass fatness had moderate R2 values for the beef breed categories (0.65 and 0.59 for the EM and LM, respectively). Equations predicting carcass conformation and the TARGET category yielded lower R2 values. The successful prediction of carcass weight for all breed categories and of carcass fatness for the
    • Red clover: A promising pasture legume for Ireland

      Weldon, B. A.; O'Kiely, P. (2021-04-11)
      Red clover is considered a very productive but short lived perennial legume. Previous research has shown attractive yields for red clover in the first year after establishment (O’Kiely et al., 2006). This experiment quantified the impacts of cultivar, companion grass, harvest schedule and nitrogen fertiliser on crop yield in the sixth year after establishment, and compared these to grass receiving inorganic N fertiliser.
    • Relationship between dairy cow genetic merit and profit on commercial spring calving dairy farms

      Ramsbottom, George; Cromie, A. R.; Horan, Brendan; Berry, Donagh (Cambridge University Press, 2011-12)
      Because not all animal factors influencing profitability can be included in total merit breeding indices for profitability, the association between animal total merit index and true profitability, taking cognisance of all factors associated with costs and revenues, is generally not known. One method to estimate such associations is at the herd level, associating herd average genetic merit with herd profitability. The objective of this study was to primarily relate herd average genetic merit for a range of traits, including the Irish total merit index, with indicators of performance, including profitability, using correlation and multiple regression analyses. Physical, genetic and financial performance data from 1131 Irish seasonal calving pasture-based dairy farms were available following edits; data on some herds were available for more than 1 year of the 3-year study period (2007 to 2009). Herd average economic breeding index (EBI) was associated with reduced herd average phenotypic milk yield but with greater milk composition, resulting in higher milk prices. Moderate positive correlations (0.26 to 0.61) existed between genetic merit for an individual trait and average herd performance for that trait (e.g. genetic merit for milk yield and average per cow milk yield). Following adjustment for year, stocking rate, herd size and quantity of purchased feed in the multiple regression analysis, average herd EBI was positively and linearly associated with net margin per cow and per litre as well as gross revenue output per cow and per litre. The change in net margin per cow per unit change in the total merit index was h1.94 (s.e.50.42), which was not different from the expectation of h2. This study, based on a large data set of commercial herds with accurate information on profitability and genetic merit, confirms that, after accounting for confounding factors, the change in herd profitability per unit change in herd genetic merit for the total merit index is within expectations.
    • Requirements of future grass-based ruminant production systems in Ireland

      O'Donovan, Michael; Lewis, Eva; O'Kiely, Padraig (Teagasc (Agriculture and Food Development Authority), Ireland, 2011)
      There is a renewed interest in grazing systems in many temperate and subtropical regions of the world. This results from lower inflation-adjusted prices, the proposed removal of some subsidies and tariffs, and rising labour, machinery and housing costs. The utilization of grass by grazing should provide the basis of sustainable livestock systems as grazed grass is the cheapest source of nutrients for ruminants. This is very important in the Irish context as there are approximately 130 000 farmers involved in primary production in Ireland and the value of the goods produced was €5.8 billion in 2008. For the future, the key objective for grazing systems is to ensure high grass utilization, allowing increased output per hectare for all sectors. The primary emphasis in grass breeding needs to be focused on (i) seasonal growth pattern as well as overall annual growth, (ii) nutritive value, including digestibility, particularly in the mid-season period, (iii) ensuring a sward canopy structure that is suitable for grazing, and (iv) development of persistent cultivars that perform under farm conditions. Evaluation programmes should also consider including an estimate of production potential at the field as well as at plot level, and evaluation under grazing management systems as well as under mixed grazing/silage management systems. It is difficult to accurately quantify the breeding achievements for grass mainly because its value, whether grazed or conserved, must be indirectly realised through the output of animal product. Grass evaluation and breeding need to better accommodate the requirements of the grazing ruminant. This will necessitate the application of new approaches and knowledge, which will ultimately enable further increases in animal output per hectare to be achieved.
    • The role of grasslands in food security and climate change

      O'Mara, Frank P. (Oxford University Press, 2012-09-21)
      Background: Grasslands are a major part of the global ecosystem, covering 37 % of the earth's terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world's natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change. Scope: Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO2 equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective. Conclusions: Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world's existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and they are continuing to sequester carbon with considerable potential to increase this further. Grassland adaptation to climate change will be variable, with possible increases or decreases in productivity and increases or decreases in soil carbon stores.
    • Scientific appraisal of the Irish grass-based milk production system as a sustainable source of premium quality milk and dairy products

      O'Brien, Bernadette; Hennessy, Deirdre (Teagasc (Agriculture and Food Development Authority), Ireland, 2017-12-29)
      The Irish dairy industry is critically important to the economy and general well-being of a large section of the Irish population. Its quality, sustainability and maintenance are the key for a vibrant rural society in the future. Two important elements for the future of this industry include (a) the quality, marketing and sale of dairy products on the export market and (b) sustainability from the perspectives of people, planet and profit. This paper provides a short review of current scientific evidence in relation to a number of topics, each of which is important in maintaining and developing dairy product quality and the sustainability of the Irish dairy industry. The topics addressed in the paper are as follows: the parameters of milk composition; milk processing; hygiene quality and safety; farm management practices and the regulations that govern such practices; animal health and welfare; environmental impacts; economic implications for farm families and rural communities; and the overall future sustainability of the family-based dairy farm structure.
    • Selection of calibration sub-sets to predict ryegrass quality using principle component analysis for near infrared spectroscopy

      Burns, G. A.; O'Kiely, Padraig; Gilliland, T. J.; Department of Agriculture, Food and the Marine; RSF –07 526 (British Grassland Society, 2015-09)
      Near infrared reflectance spectroscopy (NIRS) has become the routine method of assessing forage quality on grass evaluation and breeding programmes. NIRS requires predictive calibration models that relate spectral data to reference values developed using a calibration set (Burns et al. 2013). The samples that form the calibration set influence the accuracy and reliability of these models and need to be representative of samples that will likely be analysed (Shenk and Westerhaus, 1991; Burns et al. 2014). Analysing samples from the calibration set using reference techniques has a significant cost and time associated and needs to be considered in the context of the desired accuracy and robustness of calibration models. Calibration selection techniques can therefore maximise the accuracy and robustness of calibration models whilst reducing the number of samples requiring reference analysis. One such method is principal component analysis (PCA; Shenk and Westerhaus, 1991) whereby Shetty et al. (2012) reported that the number of samples could be reduced by up to 80% with a minimal loss in accuracy of calibration model. PCA selects representative calibration sub-sets through plotting all the samples in hyper-dimensional space, based on spectral data, and a sample is selected to represent a local neighbourhood cluster of samples for reference analysis. The aim of this research was to assess the accuracy of NIRS calibration models for buffering capacity, in vitro dry matter digestibility (DMD) and water soluble carbohydrate (WSC) content developed using calibration sub-sets selected by PCA.
    • Short communication: Effect of feeding pooled and nonpooled high-quality colostrum on passive transfer of immunity, morbidity, and mortality in dairy calves

      King, Ailbhe; Chigerwe, Munashe; Barry, John; Murphy, John P.; Rayburn, Maire C.; Kennedy, Emer; University of California Davis (American Dairy Science Association, 2020-02)
      Pooling colostrum is commonly practiced on Irish dairy farms. Pooling can result in dilution when colostrums with high and low IgG concentrations are mixed, thereby predisposing calves to failure of passive immunity. The objectives of this study were to compare IgG concentrations in colostrum from individual cows with colostrum pooled from several cows, and assess serum IgG concentrations, morbidity, and mortality among calves fed colostrum from their own dam, from a different cow, or pooled from several cows. We hypothesized that pooling colostrum reduces IgG concentration due to dilution compared with colostrum from individual cows, and that calves fed pooled colostrum achieve lower serum IgG concentrations than calves fed colostrum from individual cows. Calves were randomly assigned to 1 of 3 groups: (1) fed colostrum from their own dam (n = 20); (2) fed colostrum from a different dam (n = 20); or (3) fed pooled colostrum (n = 18). A sample of colostrum fed to each calf was collected. Serum samples were collected from calves at birth (0 h) and at 24 h after colostrum feeding. Colostrum and serum IgG concentrations were measured by radial immunodiffusion. Calves were weighed at birth and at weaning, and the health status of each calf was assessed twice daily. Health assessment was based on general demeanor, rectal temperature, fecal consistency, respiratory rate, and the presence of cough, nasal, or ocular discharge. Colostrum and serum IgG concentrations, and weaning weights were compared using ANOVA. Associations between group and morbidity or mortality rates were compared using χ2 or Fisher’s exact tests. Median and 95% confidence intervals (95% CI) of IgG concentrations of colostrum were 99.4 (81.8–111.5), 95.2 (84.1–107.2), and 100.7 (90.5–104.4) g/L for own dam, different dam, and pooled groups, respectively. We did not find any differences in colostrum IgG concentrations among the colostrum sources. Median (95% CI) serum IgG concentrations at 24 h were 52.0 (45.6–65.9), 55.7 (51.2–65.9), and 53.1 (46.2–63.7) g/L for calves that received colostrum from own dam, different dam, and pooled, respectively. All calves achieved adequate passive immunity. Serum IgG concentrations at 24 h, weaning weights, and proportions of morbidity and mortality were not different among the 3 groups. Our results suggest that on dairy farms where median colostrum IgG concentrations are high and colostrum management is optimal, pooling has a minimal effect on passive immunity and subsequent calf health.
    • Soil Properties and their Influence on Grassland Production under Low Input and Organic Farming Conditions

      Leonard, C.; Mullen, G.J.; Culleton, Noel; Breen, J.; Teagasc Walsh Fellowship Programme (Teagasc, 2006-01-01)
      This project set out to identify soil properties that most influence grassland production under low mineral nitrogen input conditions. Sixteen farms were selected in Counties Limerick and Clare and the soil sampled. Soil physical and chemical characteristics and soil biological aspects involved in the carbon and nitrogen cycles were studied in the laboratory. Nutrient additions to farms as well as the nature of grazing by livestock (numbers, types of grazing animals, grazing practices), grassland management, and production from the farms were recorded.
    • Studies into the dynamics of perennial ryegrass (Lolium perenne L.) seed mixtures

      Gilliland, T. J.; Hennessy, Deirdre; Griffith, V. (Teagasc (Agriculture and Food Development Authority), Ireland, 2011)
      The dynamic interactions of four perennial ryegrass seed mixtures sold in Northern Ireland were studied under simulated grazing and conservation managements. Mixture composition was determined as changes in phosphoglucoisomerase isozyme frequencies by calculation from known isozyme frequencies of the component varieties. Mixture productivity was measured over 4 growing seasons and compared with yields predicted from those of the components in monoculture, weighted for their actual proportion in the mixture. No significant differences were found between actual yields for mixtures and their predicted yields, but when these differences were regressed against the heading date range among the varieties in each mixture, a significant relationship was observed. A wide range in heading date among the components of the mixtures was associated with increased yield stability over years and with a declining yield advantage for the mixture compared to its components grown as monocultures. In this aspect, the mixtures showed a more rapid decline under conservation management than under simulated grazing. Mixtures also had a flatter seasonal yield-production profile than their component varieties. Tetraploid components were more aggressive than diploids, though a more open-growing diploid maintained its proportion in the sward better than a dense-growing type and manipulating the sowing ratios could be used to influence final sward composition after 2 years. It was concluded that the differences in heading date range within mixtures had a significant impact on mixture dynamics, with the tetraploid component being the most aggressive.
    • Studies of Autumn calving suckler cows, bulls at pasture and winter grazing

      Black, Alistair D; O’Riordan, Edward G.; Weldon, B.; French, Padraig (Teagasc, 2010-09)
      Most beef and dairy cows are spring calving leading to distinct seasonality of supply. Calving a proportion of the beef herd in the autumn would lead to a more uniform annual supply of cattle for slaughter and potentially increase the proportion of grazed grass in the diet of the suckler progeny. Autumn calving sucklers also facilitate the use of AI, which should enhance the product quality. This project aimed to address the technical aspects of autumn calving sucklers, which differ from those of spring calvers. The currently available international energy models were evaluated for autumn calving lactating suckler cows using the type of cow typically found in Irish suckler herds (Experiment 1). The winter accommodation of the suckler cow and calf unit and its impact on cow reproductive performance was evaluated (Experiment 2). The final part of the project evolved into component studies to determine the effect of supplementary feed on the performance of grazing bulls (Experiment 3), and the consequences of weanling cattle grazing pasture in winter as an alternative to housing them in winter (Experiments 4 to 7).
    • A Study of Time and Labour Use on Irish Suckler Beef Farms

      Fallon, R.J.; Leahy, H.; O’Riordan, Edward G.; Ruane, D. (Teagasc, 2006-01-01)
      Labour is one of the four factors of production and an increasingly costly and scarce input on farms. The attractiveness of non-farming employment, the nature of farm work and the price received for farm outputs are resulting in falling levels of hired and family labour.
    • A survey of fertilizer use from 2001-2003 for grassland and arable crops

      Coulter, B.S.; Murphy, W.E.; Culleton, Noel; Quinlan, G.; Connolly, Liam (Teagasc, 2005-07-01)
      Farm management data for the years 2001-2003 from the Teagasc National Farm Survey (NFS) were used as the basis for this fertilizer use survey. The farms which took part in the survey were randomly selected to represent the major farm systems and sizes using information from the CSO Census of Agriculture 2000. Farms were classified into 6 main farm systems namely: dairying, dairying with other enterprises, cattle rearing, cattle with other systems, mainly sheep and tillage systems. These systems refer to the dominant enterprise in each group.
    • Teagasc Hill Sheep Conference 2017 Programme

      Boyle, Gerry; Kirby, Tim; O'Sullivan, Kevin; Byrne, Declan; Keena, Catherine; Maguire, Fergal; Sheridan, Helen; Gorman, Monica; McLaren, Ann; Lambe, Nicola; et al. (Teagasc, 2017-02-08)
      Proceedings of the Teagasc Hill Sheep Conference 2017 which took place on the 8th of February 2017 in the The Malton Hotel, Killarney, Co. Kerry.
    • Teagasc submission made in response to the Consultation Paper on Interim Review of Ireland’s Nitrates Derogation 2019

      Spink, John; Buckley, Cathal; Burgess, Edward; Daly, Karen M.; Dillon, Pat; Fenton, Owen; Horan, Brendan; Humphreys, James; Hyde, Tim; McCarthy, Brian; et al. (Teagasc, 2019-06-04)
      This submission was made in response to the consultation process run jointly by the Department of Housing, Planning, Community and Local Government (DHPCLG) and the Department of Agriculture, Food and the Marine (DAFM) inviting views and comments on proposals for the Interim Review of Ireland’s Nitrates Derogation Programme in 2019. It has been prepared by Teagasc’s Water Quality Working Group in consultation with the Gaseous Emissions Working Group. These working groups have members drawn from both the Knowledge Transfer and Research Directorates of Teagasc. It was prepared following consultation with colleagues across Teagasc using their collective knowledge and expertise in agri-environmental science and practice and the implementation of the Good Agricultural Practice (GAP) and Nitrates Derogation Regulations.