Show simple item record

dc.contributor.authorNilaweera, Kanishka*
dc.contributor.authorCabrera-Rubio, Raul*
dc.contributor.authorSpeakman, John R.*
dc.contributor.authorO'Connor, Paula M.*
dc.contributor.authorMcAuliffe, Ann Marie*
dc.contributor.authorGuinane, Caitriona M.*
dc.contributor.authorLawton, Elaine M.*
dc.contributor.authorCrispie, Fiona*
dc.contributor.authorAguillera, Monica*
dc.contributor.authorStanley, Maurice*
dc.contributor.authorBoscaini, Serena*
dc.contributor.authorJoyce, Susan*
dc.contributor.authorMelgar, Silvia*
dc.contributor.authorCryan, John F.*
dc.contributor.authorCotter, Paul D.*
dc.date.accessioned2017-07-28T15:34:23Z
dc.date.issued21/03/2017
dc.identifier.citationNilaweera KN, Cabrera-Rubio R, Speakman JR, O' Connor PM, McAuliffe A, Guinane CM, Lawton E, Crispie F, Aguilera M, Stanley M and others. Whey protein-effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expression. American journal of Physiology. Endocrinology and Metabolism 2017;313(1):E1-E11; doi 10.1152/ajpendo.00356.2016.en_GB
dc.identifier.urihttp://hdl.handle.net/11019/1251
dc.identifier.urihttp://dx.doi.org/10.1152/ajpendo.00356.2016
dc.descriptionThis work was supported by Teagasc, Ireland and in part by a research grant from Science Foundation Ireland (SFI) under the Grant Number SFI/16/BBSRC/3389 and the BBSRC under the Grant Reference BB/P009875/1 (KNN and JRS) and by SFI Grant Number SFI/12/RC/2273 (JFC and APC Microbiome Institute).
dc.descriptionpeer-revieweden_GB
dc.description.abstractWe tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway.en_GB
dc.description.sponsorshipBBSRC
dc.description.sponsorshipScience Foundation Irelanden_GB
dc.language.isoenen_GB
dc.publisherAmerican Physiological Societyen_GB
dc.relation.ispartofseriesAmerican Journal of Physiology - Endocrinology and Metabolism;vol 31
dc.subjectWhey proteinsen_GB
dc.subjectenergy balanceen_GB
dc.subjectintestineen_GB
dc.subjectgut microbiotaen_GB
dc.subjectgene expressionen_GB
dc.titleWhey protein effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expressionen_GB
dc.typeArticleen_GB
dc.embargo.terms21/03/2018en_GB
dc.embargo.lift21/03/2018


Files in this item

Thumbnail
Name:
Nilaweera et al 2017 w cover.pdf
Size:
6.001Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record