• Adding value to milk by increasing its protein and CLA contents

      Murphy, J.J.; Stanton, Catherine; O'Donovan, Michael; Kavanagh, S.; Maher, J.; Patton, Joe; Mohammed, Riaz (Teagasc, 01/08/2008)
      The mid-summer milk protein study was undertaken on 34 commercial dairy farms in 2005 to evaluate the influence of dietary and management variables on milk protein content in mid-season. Data on grass composition, genetic merit of the herds and milk protein content were collected and analysed by multiple regression. Both calving date and genetic merit for milk protein content were significantly associated with milk protein content and were used as adjustment factors when evaluating the association between measures of grass quality and milk protein content. Milk protein content was associated with grass OMD (P = 0.04) and NDF content (P = 0.02) but not with CP content (P = 0.80). It is concluded that herds calving earlier, with a greater genetic merit for milk protein content and consuming better quality pasture would have greater milk protein contents in mid-season.
    • Animal performance and economic implications of alternative production systems for dairy bulls slaughtered at 15 months of age

      Murphy, B.M.; Crosson, Paul; Kelly, Alan K; Prendiville, Robert; Department of Agriculture, Food and the Marine, Ireland; 11/SF/322 (Teagasc (Agriculture and Food Development Authority), Ireland, 2017-10-26)
      The objectives of this experiment were to investigate (i) the influence of varying levels of concentrate supplementation during the grazing season, (ii) alternative finishing strategies for dairy bulls slaughtered at 15 mo of age and (iii) economic implications of these management strategies. Bulls were assigned to a 2 (level of concentrate supplementation during the grazing season: 1 kg [LA] and 2 kg [HA] dry matter [DM]/head daily) × 2 (finishing strategies: concentrates ad libitum group [AL] or grass silage ad libitum plus 5 kg DM of concentrates/head daily group [SC]) factorial arrangement of treatments. Average daily gain (ADG) during the grazing season was greater (P < 0.01) for HA than for LA. Consequently, HA bulls were 16 kg heavier at housing: 214 and 230 kg, respectively (P < 0.05). During the finishing period, ADG tended (P = 0.09) to be greater for LA than for HA. Carcass weight tended (P = 0.08) to be greater for HA than for LA. Fat score was greater for HA. Live weight at slaughter (P < 0.001) and carcass weight (P < 0.001) were 41 and 23 kg greater for AL than for SC, respectively. Conformation (P < 0.05) and fat score (P < 0.05) were greater for AL than for SC. The Grange Dairy Beef Systems Model simulated whole-farm system effects of the production systems. Net margin/head was greater for LA than for HA and greater for SC than for AL. Sensitivity analysis of finishing concentrate price, calf purchase price and beef price showed no re-ranking of the systems on a net margin basis. Although greater animal performance was observed from the higher plane of nutrition, overall profitability was lower.
    • Application of data envelopment analysis to measure technical efficiency on a sample of Irish dairy farms

      Kelly, Eoin; Shalloo, Laurence; Geary, Una; Kinsella, Anne; Wallace, Michael (Teagasc, 2012-12)
      The aim of this study was to determine the levels of technical efficiency on a sample of Irish dairy farms utilizing Data Envelopment Analysis (DEA) and to identify key management and production factors that differ between producers indentified as efficient and inefficient. DEA was used in this study to generate technical efficiency scores under assumptions of both constant returns to scale (CRS) and variable returns to scale (VRS). The average technical efficiency score was 0.785 under CRS and 0.833 under VRS. Key production characteristics of efficient and inefficient producers were compared using an analysis of variance. More technically efficient producers used less input per unit of output, had higher production per cow and per hectare and had a longer grazing season, a higher milk quality standard, were more likely to have participated in milk recording and had greater land quality compared to the inefficient producers.
    • The association between herd- and cow-level factors and somatic cell count of Irish dairy cows

      McParland, Sinead; O'Brien, Bernadette; McCarthy, J.; Department of Agriculture, Food and the Marine; 10/RD/AAQUALITYMILK/TMFRC713 (Teagasc (Agriculture and Food Development Authority), Ireland, 2013)
      Somatic cell count (SCC) is an indicator of both udder health and milk quality and is measured at an animal level through national milk recording schemes. The objective of this study was to assess the animal and herd factors contributing to elevated SCC (i.e. poorer milk quality). Test day records (n = 2,658,928) from 519,456 cow lactations obtained between 2007 and 2011 were included in the analyses. Herd factors tested included the geographical region of the herd and production system operated (spring calving or mixed calving system). Animal factors tested included breed, parity and age nested within parity. Four definitions of normalised SCC (i.e. SCS) were considered: 1) average test-day SCS within a 24 hour period (TD_SCS), 2) maximum SCS (peak_SCS), 3) minimum SCS (min_SCS), and 4) average SCS (avg_SCS) recorded across cow lactation; in addition, the proportion of test day records with an SCC count >200,000 (prop_200) or >250,000 (prop_250) within cow lactation were included. Following adjustment for fixed effects, average TD_SCS was 179,308 cells per mL while avg_SCS, and average min_SCS and peak_SCS were 119,481, 50,992 and 298,813 cells per mL, respectively. All animal and herd factors had a significant effect on SCC. Older animals, animals which were younger at calving than contemporaries and Holstein animals had higher SCC than younger alternative breed animals who calved at the median age. In addition, mixed calving production systems and herds in Connaught had higher SCC than spring calving herds in the other regions of Ireland.
    • Associations between paratuberculosis ELISA results and test-day records of cows enrolled in the Irish Johne's Disease Control Program

      Botaro, Bruno G.; Ruelle, Elodie; More, Simon J; Strain, Sam; Graham, David A.; O'Flaherty, Joe; Shalloo, Laurence; Department of Agriculture, Food and the Marine (Elsevier, 2017-07-12)
      The effect of the Mycobacterium avium ssp. paratuberculosis (MAP) ELISA status on test-day milk performance of cows from Irish herds enrolled in the pilot national voluntary Johne's disease control program during 2013 to 2015 was estimated. A data set comprising 92,854 cows and 592,623 complete test-day records distributed across 1,700 herds was used in this study. The resulting ELISA outcome (negative, inconclusive, and positive) of each cow within each year of the program was used to allocate the cow into different scenarios representing the MAP status. At MAPscenario1, all cows testing ELISA nonnegative (i.e., inconclusive and positive) were assigned a MAP-positive status; at MAPscenario2 only cows testing ELISA-positive were assigned a MAP-positive status; at MAPscenario3 only cows testing ELISA nonnegative (inconclusive or positive) and gathered exclusively from herds where at least 2 further ELISA nonnegative (inconclusive or positive) cows were found were assigned a MAP-positive status; at MAPscenario4 only cows testing ELISA-positive that were gathered exclusively from herds where at least 2 further ELISA-positive cows were found were assigned a MAP-positive status. Milk outputs based on test-day records were standardized for fat and protein contents (SMY) and the effect of MAP ELISA status on the SMY was estimated by a linear mixed effects model structure. The SMY mean difference recorded at test day between cows with a MAP-positive status and those with a MAP-negative status within MAPscenario1 was estimated at −0.182 kg/test day; the mean difference was −0.297 kg/test day for MAPscenario2; for MAPscenario3 mean difference between MAP-positive status and MAP test-negative cows was −0.209 kg/test day, and for MAPscenario4, the difference was −0.326 kg/test day.
    • Beef Cross Breeding of Dairy and Beef Cows

      Keane, Michael G. (Teagasc, 2011-03-01)
      Summary The rationale for crossing dairy cows with beef bulls is to increase the beef productivity and value of the progeny. The proportion of dairy cows available for beef crossing is determined by the dairy herd replacement rate. The performance of cross-bred cattle is generally superior to the mean of the parent breeds because of heterosis. This is most pronounced for reproduction, maternal and calf survival traits. Crossing dairy cows with early maturing beef breeds (e.g. Angus, Hereford) has little effect on growth but improves carcass conformation and reduces feed intake. Crossing with most late maturing beef breeds also improves carcass conformation and reduces feed intake, but in addition, growth rate, kill-out proportion and carcass muscle proportion are increased. Cross breeding can have small negative effects on dam milk production, and subsequent reproduction can be impaired following a long gestation or difficult calving. There is little advantage in crossing with double muscled sire breeds (e.g. Belgian Blue, Piedmontese) compared with the larger conventional late maturing breeds (e.g. Charolais, Blonde d'Aquitaine). There are few effects of sire breed on meat quality.
    • Beef production from feedstuffs conserved using new technologies to reduce negative environmental impacts

      O'Kiely, Padraig; Crosson, Paul; Hamilton, William J.; Little, Enda; Stacey, Pamela; Walsh, Karl; Black, Alistair D; Crowley, James C.; Drennan, Michael J; Forristal, Dermot; et al. (Teagasc, 2007-12-01)
      Most (ca. 86%) Irish farms make some silage. Besides directly providing feed for livestock, the provision of grass silage within integrated grassland systems makes an important positive contribution to effective grazing management and improved forage utilisation by grazing animals, and to effective feed budgeting by farmers. It can also contribute to maintaining the content of desirable species in pastures, and to livestock not succumbing to parasites at sensitive times of the year. Furthermore, the optimal recycling of nutrients collected from housed livestock can often be best achieved by spreading the manures on the land used for producing the conserved feed. On most Irish farms, grass silage will remain the main conserved forage for feeding to livestock during winter for the foreseeable future. However, on some farms high yields of whole-crop (i.e. grain + straw) cereals such as wheat, barley and triticale, and of forage maize, will be an alternative option provided that losses during harvesting, storage and feedout are minimised and that input costs are restrained. These alternative forages have the potential to reliably support high levels of animal performance while avoiding the production of effluent. Their production and use however will need to advantageously integrate into ruminant production systems. A range of technologies can be employed for crop production and conservation, and for beef production, and the optimal options need to be identified. Beef cattle being finished indoors are offered concentrate feedstuffs at rates that range from modest inputs through to ad libitum access. Such concentrates frequently contain high levels of cereals such as barley or wheat. These cereals are generally between 14% to 18% moisture content and tend to be rolled shortly before being included in coarse rations or are more finely processed prior to pelleting. Farmers thinking of using ‘high-moisture grain’ techniques for preserving and processing cereal grains destined for feeding to beef cattle need to know how the yield, conservation efficiency and feeding value of such grains compares with grains conserved using more conventional techniques. European Union policy strongly encourages a sustainable and multifunctional agriculture. Therefore, in addition to providing European consumers with quality food produced within approved systems, agriculture must also contribute positively to the conservation of natural resources and the upkeep of the rural landscape. Plastics are widely used in agriculture and their post-use fate on farms must not harm the environment - they must be managed to support the enduring sustainability of farming systems. There is an absence of information on the efficacy of some new options for covering and sealing silage with plastic sheeting and tyres, and an absence of an inventory of the use, re-use and post-use fate of plastic film on farms. Irish cattle farmers operate a large number of beef production systems, half of which use dairy bred calves. In the current, continuously changing production and market conditions, new beef systems must be considered. A computer package is required that will allow the rapid, repeatable simulation and assessment of alternate beef production systems using appropriate, standardised procedures. There is thus a need to construct, evaluate and utilise computer models of components of beef production systems and to develop mathematical relationships to link system components into a network that would support their integration into an optimal system model. This will provide a framework to integrate physical and financial on-farm conditions with models for estimating feed supply and animal growth patterns. Cash flow and profit/loss results will be developed. This will help identify optimal systems, indicate the cause of failure of imperfect systems and identify areas where applied research data are currently lacking, or more basic research is required.
    • Bioeconomic modelling of male Holstein-Friesian dairy calf-to-beef production systems on Irish farms

      Ashfield, A.; Wallace, Michael; Prendiville, Robert; Crosson, Paul (Teagasc (Agriculture and Food Development Authority), Ireland, 2014)
      With the abolition of milk quota in 2015 and increase in the use of Holstein-Friesian sires in recent years there is predicted to be an increase in the number of male Holstein-Friesian animals available for beef production. In broad terms, farmers have two options for finishing these animals; as bulls or steers. In either case, Irish beef cattle systems are based on maximising lifetime live-weight gain from grass-based diets. Managing the relationship between the supply and demand for grazed grass is complicated in these pasture-based systems due to the seasonal variability in grass growth. The Grange Dairy Beef Systems Model (GDBSM) was used to simulate the relationship between grazed grass supply and demand and then determine the profitability of Holstein-Friesian male animals finished as bulls at 16 (B16), 19 (B19) and 22 (B22) months of age and steers at 24 (S24) months of age. Combinations of these cattle finishing options were also evaluated. The most profitable system was S24. All systems were very sensitive to variations in beef and concentrate prices and less sensitive to calf price changes with fertiliser price changes having very little effect. Bull systems were more sensitive than the steer system to variation in beef, calf and concentrate prices. There was no advantage of combination systems in terms of utilisation of grass grown or net margin.
    • Body and carcass measurements, carcass conformation and tissue distribution of high dairy genetic merit Holstein, standard dairy genetic merit Friesian and Charolais x Holstein-Friesian male cattle

      McGee, Mark; Keane, Michael G.; Neilan, R.; Moloney, Aidan P; Caffrey, Patrick J. (Teagasc, Oak Park, Carlow, Ireland, 2007)
      The increased proportion of Holstein genes in the dairy herd may have undesirable consequences for beef production in Ireland. A total of 72 spring-born calves, (24 Holstein (HO), 24 Friesian (FR) and 24 Charolais X Holstein-Friesian (CH)) were reared from calfhood to slaughter. Calves were artificially reared indoors and spent their first summer at pasture following which they were assigned to a 3 breeds (HO, FR and CH) 2 production systems (intensive 19-month bull beef and extensive 25-month steer beef) 2 slaughter weights (560 and 650 kg) factorial experiment. Body measurements of all animals were recorded at the same time before the earliest slaughter date. After slaughter, carcasses were graded and measured and the pistola hind-quarter was separated into fat, bone and muscle. HO had significantly higher values for withers height, pelvic height and chest depth than FR, which in turn had higher values than CH. HO had a longer back and a narrower chest than either FR or CH, which were not significantly different. Carcass length and depth, pistola length, and leg length were 139.2, 134.4 and 132.0 (s.e. 0.81), 52.1, 51.3 and 47.7 (s.e. 0.38), 114.4, 109.0 and 107.0 (s.e. 0.65) and 76.7, 71.9 and 71.4 (s.e. 0.44) cm for HO, FR and CH, respectively. Breed differences in pistola tissue distribution between the joints were small and confined to the distal pelvic limb and ribs. There were relatively small breed differences in the distribution of pistola muscle weight between individual muscles. Body measurements were significantly greater for animals on the intensive system (bulls) than the extensive system (steers) in absolute terms, but the opposite was so when they were expressed relative to live weight. The only significant difference in relative carcass measurements between the production systems was for carcass depth, which was lower for the intensive compared with the extensive system. Increasing slaughter weight significantly increased all carcass measurements in absolute terms but reduced them relative to weight. It is concluded that there were large differences between the breed types in body and carcass measurements, and hence in carcass shape and compactness but differences in tissue distribution were small.
    • Capturing the economic benefit of Lolium perenne cultivar performance

      McEvoy, Mary; O'Donovan, Michael; Shalloo, Laurence; Department of Agriculture, Food and the Marine (Teagasc (Agriculture and Food Development Authority), Ireland, 2011)
      Economic values were calculated for grass traits of economic importance in Irish grass-based ruminant production systems. Traits considered were those that had the greatest potential to influence the profitability of a grazing system. These were: grass dry matter (DM) yield in spring, mid-season and autumn, grass quality (dry matter digestibility; DMD), 1st and 2nd cut silage DM yield and sward persistency. The Moorepark Dairy Systems Model was used to simulate a dairy farm. Economic values were calculated by simulating the effect of a unit change in the trait of interest while holding all other traits constant. The base scenario involved a fixed herd size and land area (40 ha), and an annual DM yield of 13 t/ha. The economic values generated under the base scenario were: € 0.152/kg for DM yield in spring, € 0.030/kg for DM yield in mid-season and € 0.103/kg for DM yield in autumn; € 0.001, € 0.008, € 0.010, € 0.009, € 0.008 and € 0.006 per 1 g/kg change in DMD for the months of April to September, respectively; € 0.03/kg for 1st cut silage DM yield, € 0.02/kg for 2nd cut silage DM yield; and − € 4.961 for a 1 percent reduction in persistency. Alternative scenarios were examined to determine the sensitivity of the economic values to changes in annual DM yield, sward utilisation and a scenario where silage production was the focus of the system. The economic values were used to calculate a total merit index for each of 20 perennial ryegrass cultivars based on production data from a 3 year plot study. The rank correlation between the merit index values for the cultivars under the base scenario and the scenario involving a reduction in herbage utilisation was 1.0, while that with the scenario involving reduced annual DM yield was 0.94. It is concluded that the total merit index can be used to identify cultivars that can generate the greatest economic contribution to a grass-based production system, regardless of system or intensity of grass production.
    • Characterisation of physiological and immunological responses in beef cows to abrupt weaning and subsequent housing

      Lynch, Eilish M; Earley, Bernadette; McGee, Mark; Doyle, Sean; Teagasc Walsh Fellowship Programme; John Hume Scholarship (Biomed Central, 2010-07-20)
      Background: Weaning involves the permanent separation of the calf from the dam and has been shown to be stressful for both. The objectives of this study were to characterise the effect of i) abrupt weaning and ii) subsequent housing on the extended physiological and immunological responses of beef cows. At weaning (day (d) 0, mean age of calf (s.d.) 212 (24.5) d), cows were abruptly separated from their calves and returned to the grazing area. After 35 d at pasture, cows were housed in a slatted floor shed and offered grass silage ad libitum plus a mineral-vitamin supplement daily. Rectal body temperature was recorded and blood samples were obtained on i) d 0 (weaning), 2, 7, 14, 21, 28, 35 and subsequently on ii) d 0 (housing), 2, 7, 14 and 21 for physiological, haematological and immunological measurements. Results: Post-weaning, concentration of cortisol and dehydroepiandrosterone were unchanged (P > 0.05). Rectal body temperature, neutrophil number and neutrophil: lymphocyte ratio increased (P < 0.01) on d 2 compared with pre-weaning baseline. Lymphocyte and neutrophil number decreased (P < 0.05) on d 2 to 7 and d 7 to 21, respectively, compared with pre-weaning baseline. Interferon-γ production decreased (P < 0.05) on d 2 compared with pre-weaning baseline. An increase (P < 0.05) in acute phase proteins, fibrinogen and haptoglobin was evident on d 2 to 35 compared with pre-weaning baseline. Concentration of glucose increased on d 2 to 28, whereas non-esterified fatty acid decreased on d 2 to 35 compared with pre-weaning baseline. Post-housing, concentrations of cortisol, rectal body temperature, total leukocyte number, and glucose were unchanged (P > 0.05). On d 2 post-housing, neutrophil number and neutrophil: lymphocyte ratio increased (P < 0.05), whereas lymphocyte number and concentrations of dehydroepiandrosterone, fibrinogen and non-esterified fatty acid decreased (P < 0.05) compared with pre-housing baseline. Concentration of haptoglobin increased (P < 0.05) on d 14 to 21 post-housing. Conclusions: A transitory increase in neutrophil number and decrease in lymphocyte number, increased neutrophil:lymphocyte ratio coupled with decreased interferon-γ production, and increased concentration of acute phase proteins indicate a stress response in cows post-weaning, whereas post-housing, changes were less marked.
    • Characteristics of feed efficiency within and across lactation in dairy cows and the effect of genetic selection

      Hurley, A. M.; Lopez-Villalobos, N.; McParland, Sinead; Lewis, Eva; Kennedy, Emer; O'Donovan, Michael; Burke, Jennifer L.; Berry, Donagh P.; Irish Department of Agriculture, Food and the Marine; European Union (Elsevier, 2017-11-23)
      The objective of the present study was to investigate the phenotypic inter- and intra-relationships within and among alternative feed efficiency metrics across different stages of lactation and parities; the expected effect of genetic selection for feed efficiency on the resulting phenotypic lactation profiles was also quantified. A total of 8,199 net energy intake (NEI) test-day records from 2,505 lactations on 1,290 cows were used. Derived efficiency traits were either ratio based or residual based; the latter were derived from least squares regression models. Residual energy intake (REI) was defined as NEI minus predicted energy requirements based on lactation performance; residual energy production (REP) was defined as net energy for lactation minus predicted energy requirements based on lactation performance. Energy conversion efficiency was defined as net energy for lactation divided by NEI. Pearson phenotypic correlations among traits were computed across lactation stages and parities, and the significance of the differences was determined using the Fisher r-to-z transformation. Sources of variation in the feed efficiency metrics were investigated using linear mixed models, which included the fixed effects of contemporary group, breed, parity, stage of lactation, and the 2-way interaction of parity by stage of lactation. With the exception of REI, parity was associated with all efficiency and production traits. Stage of lactation, as well as the 2-way interaction of parity by stage of lactation, were associated with all efficiency and production traits. Phenotypic correlations among the efficiency and production traits differed not only by stage of lactation but also by parity. For example, the strong phenotypic correlation between REI and energy balance (EB; 0.89) for cows in parity 3 or greater and early lactation was weaker for parity 1 cows at the same lactation stage (0.81), suggesting primiparous cows use the ingested energy for both milk production and growth. Nonetheless, these strong phenotypic correlations between REI and EB suggested negative REI animals (i.e., more efficient) are also in more negative EB. These correlations were further supported when assessing the effect on phenotypic performance of animals genetically divergent for feed intake and efficiency based on parental average. Animals genetically selected to have lower REI resulted in cows who consumed less NEI but were also in negative EB throughout the entire lactation. Nonetheless, such repercussions of negative EB do not imply that selection for negative REI (as defined here) should not be practiced, but instead should be undertaken within the framework of a balanced breeding objective, which includes traits such as reproduction and health.
    • Comparative performance and economic appraisal of Holstein-Friesian, Jersey and Jersey×Holstein-Friesian cows under seasonal pasture-based management

      Prendiville, Robert; Shalloo, Laurence; Pierce, K.M.; Buckley, Frank; Department of Agriculture, Food and the Marine; RSF-06-353 (Teagasc (Agriculture and Food Development Authority), Ireland, 2011)
      The objective of this study was to provide comparative performance data for Holstein- Friesian (HF), Jersey (J) and Jersey×Holstein-Friesian (F1) cows under a seasonal pasture-based management system and to simulate the effect of cow breed on farm profitability. Data for a total of 329 lactations, from 162 (65 HF, 48 J and 49 F1) cows, were available. Milk yield was highest for HF, intermediate for F1 and lowest for J, while milk fat and protein concentrations were highest for J, intermediate for F1 and lowest for HF. Yield of fat plus protein was highest for F1, intermediate for HF and lowest for J. Mean bodyweight was 523, 387 and 466 kg for HF, J and F1, respectively. Body condition score was greater for the J and F1 compared to HF. Reproductive efficiency was similar for the HF and J but superior for the F1. The Moorepark Dairy Systems Model was used to simulate a 40 ha farm integrating biological data for each breed group. Milk output was highest for systems based on HF cows. Total sales of milk solids and, consequently, milk receipts were higher with J and F1 compared to HF. Total costs were lowest with F1 cows, intermediate with HF and highest with J. Overall farm profitability was highest with F1 cows, intermediate with HF and lowest with J. Sensitivity analysis of milk price, fat to protein price ratio and differences in cost of replacement heifers showed no re-ranking of the breed groups for farm profit.
    • A Comparison of the Productivity of Suckler Cows of Different Breed Composition

      Drennan, Michael J; Murphy, B.M. (Teagasc, 2006-01-01)
      The findings obtained in a comparison of 5 suckler dam breed types {Limousin x Friesian (LF), Limousin x (Limousin x Friesian) (LLF), Limousin (L), Charolais (C) and Simmental x (Limousin x Friesian) (SLF)} and their progeny through to slaughter
    • Cow welfare in grass based milk production systems

      Boyle, Laura; Olmos, G.; Llamas Moya, S.; Palmer, M.A.; Gleeson, David E; O'Brien, Bernadette; Horan, Brendan; Berry, Donagh P.; Arkins, S.; Alonso Gómez, M.; et al. (Teagasc, 2008-08-01)
      Under this project, aspects of pasture based milk production systems, namely different milking frequency and feeding strategies as well as genetic selection for improved fitness using the Irish Economic Breeding Index (EBI) were evaluated in terms of dairy cow behaviour, health, immune function and reproductive performance. Additionally, a typical Irish pasture based system was compared to one in which cows were kept indoors in cubicles and fed a total mixed ration for the duration of lactation in order to elucidate the perceived benefits of pasture based systems for dairy cow welfare.
    • Daily and seasonal trends of electricity and water use on pasture-based automatic milking dairy farms

      Shortall, John; O'Brien, Bernadette; Sleator, Roy D.; Upton, John; Teagasc Walsh Fellowship Programme; European Union; 2012015; SME-2012-2-314879 (Elsevier, 2017-11-15)
      The objective of this study was to identify the major electricity and water-consuming components of a pasture-based automatic milking (AM) system and to establish the daily and seasonal consumption trends. Electricity and water meters were installed on 7 seasonal calving pasture-based AM farms across Ireland. Electricity-consuming processes and equipment that were metered for consumption included milk cooling components, air compressors, AM unit(s), auxiliary water heaters, water pumps, lights, sockets, automatic manure scrapers, and so on. On-farm direct water-consuming processes and equipment were metered and included AM unit(s), auxiliary water heaters, tubular coolers, wash-down water pumps, livestock drinking water supply, and miscellaneous water taps. Data were collected and analyzed for the 12-mo period of 2015. The average AM farm examined had 114 cows, milking with 1.85 robots, performing a total of 105 milkings/AM unit per day. Total electricity consumption and costs were 62.6 Wh/L of milk produced and 0.91 cents/L, respectively. Milking (vacuum and milk pumping, within-AM unit water heating) had the largest electrical consumption at 33%, followed by air compressing (26%), milk cooling (18%), auxiliary water heating (8%), water pumping (4%), and other electricity-consuming processes (11%). Electricity costs followed a similar trend to that of consumption, with the milking process and water pumping accounting for the highest and lowest cost, respectively. The pattern of daily electricity consumption was similar across the lactation periods, with peak consumption occurring at 0100, 0800, and between 1300 and 1600 h. The trends in seasonal electricity consumption followed the seasonal milk production curve. Total water consumption was 3.7 L of water/L of milk produced. Water consumption associated with the dairy herd at the milking shed represented 42% of total water consumed on the farm. Daily water consumption trends indicated consumption to be lowest in the early morning period (0300–0600 h), followed by spikes in consumption between 1100 and 1400 h. Seasonal water trends followed the seasonal milk production curve, except for the month of May, when water consumption was reduced due to above-average rainfall. This study provides a useful insight into the consumption of electricity and water on a pasture-based AM farms, while also facilitating the development of future strategies and technologies likely to increase the sustainability of AM systems.
    • Detection of selection signatures in dairy and beef cattle using high-density genomic information

      Zhao, Fuping; McParland, Sinead; Kearney, Francis; Du, Lixin; Berry, Donagh P.; Department of Agriculture, Food and the Marine; Agricultural Science and Technology Innovation Program; Natural Science Foundation of China; 11/S/112; ASTIP-IAS-TS-6 (Biomed Central, 2015-06-19)
      Background Artificial selection for economically important traits in cattle is expected to have left distinctive selection signatures on the genome. Access to high-density genotypes facilitates the accurate identification of genomic regions that have undergone positive selection. These findings help to better elucidate the mechanisms of selection and to identify candidate genes of interest to breeding programs. Results Information on 705 243 autosomal single nucleotide polymorphisms (SNPs) in 3122 dairy and beef male animals from seven cattle breeds (Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental) were used to detect selection signatures by applying two complementary methods, integrated haplotype score (iHS) and global fixation index (FST). To control for false positive results, we used false discovery rate (FDR) adjustment to calculate adjusted iHS within each breed and the genome-wide significance level was about 0.003. Using the iHS method, 83, 92, 91, 101, 85, 101 and 86 significant genomic regions were detected for Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental cattle, respectively. None of these regions was common to all seven breeds. Using the FST approach, 704 individual SNPs were detected across breeds. Annotation of the regions of the genome that showed selection signatures revealed several interesting candidate genes i.e. DGAT1, ABCG2, MSTN, CAPN3, FABP3, CHCHD7, PLAG1, JAZF1, PRKG2, ACTC1, TBC1D1, GHR, BMP2, TSG1, LYN, KIT and MC1R that play a role in milk production, reproduction, body size, muscle formation or coat color. Fifty-seven common candidate genes were found by both the iHS and global FST methods across the seven breeds. Moreover, many novel genomic regions and genes were detected within the regions that showed selection signatures; for some candidate genes, signatures of positive selection exist in the human genome. Multilevel bioinformatic analyses of the detected candidate genes suggested that the PPAR pathway may have been subjected to positive selection. Conclusions This study provides a high-resolution bovine genomic map of positive selection signatures that are either specific to one breed or common to a subset of the seven breeds analyzed. Our results will contribute to the detection of functional candidate genes that have undergone positive selection in future studies.
    • The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds

      Purfield, Deirdre C; McParland, Sinead; Wall, E.; Berry, Donagh P.; Department of Agriculture, Food and the Marine, Ireland; 11/S/112; 14/S/849 (PLOS, 2017-05-02)
      Domestication and the subsequent selection of animals for either economic or morphological features can leave a variety of imprints on the genome of a population. Genomic regions subjected to high selective pressures often show reduced genetic diversity and frequent runs of homozygosity (ROH). Therefore, the objective of the present study was to use 42,182 autosomal SNPs to identify genomic regions in 3,191 sheep from six commercial breeds subjected to selection pressure and to quantify the genetic diversity within each breed using ROH. In addition, the historical effective population size of each breed was also estimated and, in conjunction with ROH, was used to elucidate the demographic history of the six breeds. ROH were common in the autosomes of animals in the present study, but the observed breed differences in patterns of ROH length and burden suggested differences in breed effective population size and recent management. ROH provided a sufficient predictor of the pedigree inbreeding coefficient, with an estimated correlation between both measures of 0.62. Genomic regions under putative selection were identified using two complementary algorithms; the fixation index and hapFLK. The identified regions under putative selection included candidate genes associated with skin pigmentation, body size and muscle formation; such characteristics are often sought after in modern-day breeding programs. These regions of selection frequently overlapped with high ROH regions both within and across breeds. Multiple yet uncharacterised genes also resided within putative regions of selection. This further substantiates the need for a more comprehensive annotation of the sheep genome as these uncharacterised genes may contribute to traits of interest in the animal sciences. Despite this, the regions identified as under putative selection in the current study provide an insight into the mechanisms leading to breed differentiation and genetic variation in meat production.
    • The eating quality of beef from young dairy bulls derived from two breed types at three ages from two different production systems

      Nian, Yingqun; Kerry, Joseph P.; Prendiville, Robert; Allen, Paul; Teagasc Walsh Fellowship Programme (Teagasc (Agriculture and Food Development Authority), Ireland, 08/07/2017)
      Expansion of the Irish dairy herd has led to more dairy breed male calves being available for beef production. This study investigated the physico-chemical and sensory characteristics of beef from Holstein-Friesian (HF) and Jersey × HF (JEX) young bulls fed pasture grass only or pasture grass plus 2 kg concentrate during their first grazing season and slaughtered at 15, 19 or 22 mo of age. Longissimus thoracis (LT) muscles were collected from 67 carcasses. Postmortem pH, ultimate pH (pHu), meat colour, chemical composition, collagen content and solubility were evaluated. After ageing for 21 d, Warner-Bratzler shear force and cooking loss were determined, and assessments by a trained sensory panel were conducted. Meat from older animals was darker. The pHu, moisture and ash contents decreased, while residual roast beef flavour length increased with age. However, increasing age to slaughter did not negatively influence tenderness. JEX beef had lower cooking loss, was darker and redder, in addition to having higher sensory scores for initial tenderness and fattiness than HF beef. Warner-Bratzler variables were positively correlated with cooking loss and chewiness and were negatively correlated with intramuscular fat (IMF) content, soluble collagen and initial tenderness. In summary, most young dairy bull beef samples were acceptably tender after 21 d of ageing and half of them had acceptable IMF content. Slaughter age affected beef colour, pHu, chemical composition and flavour length. The eating quality of meat from the JEX breed type was considered to be superior to that of the HF breed type. Diet during the first season had no effect on meat quality traits.
    • An economic analysis of the Irish milk quota exchange scheme.

      Hennessy, Thia; Lapple, Doris; Shalloo, Laurence; Wallace, Michael (Institute of Agricultural Management, 2012-03)
      In Ireland, the trade of milk quota is subject to regional restrictions and a large variation in quota prices between regions has caused some controversy. This article investigates this issue by analysing the functioning of the Irish milk quota exchange market. For this purpose, the economic value of milk quota is estimated using an optimisation framework. The estimated values are then compared to milk quota prices paid at the exchange market. The analysis reveals that quota is undervalued in the border, midlands and west and south-west regions, while milk quota is overvalued in the east and south regions. This implies that farmers in certain regions overpay for additional quota, while other farmers secure good value for their quota investments. The paper concludes by discussing that the identified regional differences are only partly explained by economic and production factors.