• Gastrointestinal tract size, total-tract digestibility, and rumen microflora in different dairy cow genotypes

      Beecher, Marion; Buckley, Frank; Waters, Sinead M.; Boland, T. M.; Enriquez-Hidalgo, D.; Deighton, M. H.; O'Donovan, Michael; Lewis, Eva (Elsevier Inc and American Dairy Science Association, 2014-04-03)
      The superior milk production efficiency of Jersey (JE) and Jersey × Holstein-Friesian (JE × HF) cows compared with Holstein-Friesian (HF) has been widely published. The biological differences among dairy cow genotypes, which could contribute to the milk production efficiency differences, have not been as widely studied however. A series of component studies were conducted using cows sourced from a longer-term genotype comparison study (JE, JE × HF, and HF). The objectives were to (1) determine if differences exist among genotypes regarding gastrointestinal tract (GIT) weight, (2) assess and quantify whether the genotypes tested differ in their ability to digest perennial ryegrass, and (3) examine the relative abundance of specific rumen microbial populations potentially relating to feed digestibility. Over 3 yr, the GIT weight was obtained from 33 HF, 35 JE, and 27 JE × HF nonlactating cows postslaughter. During the dry period the cows were offered a perennial ryegrass silage diet at maintenance level. The unadjusted GIT weight was heavier for the HF than for JE and JE × HF. When expressed as a proportion of body weight (BW), JE and JE × HF had a heavier GIT weight than HF. In vivo digestibility was evaluated on 16 each of JE, JE × HF, and HF lactating dairy cows. Cows were individually stalled, allowing for the total collection of feces and were offered freshly cut grass twice daily. During this time, daily milk yield, BW, and dry matter intake (DMI) were greater for HF and JE × HF than for JE; milk fat and protein concentration ranked oppositely. Daily milk solids yield did not differ among the 3 genotypes. Intake capacity, expressed as DMI per BW, tended to be different among treatments, with JE having the greatest DMI per BW, HF the lowest, and JE × HF being intermediate. Production efficiency, expressed as milk solids per DMI, was higher for JE than HF and JE × HF. Digestive efficiency, expressed as digestibility of dry matter, organic matter, N, neutral detergent fiber, and acid detergent fiber, was higher for JE than HF. In grazing cows (n = 15 per genotype) samples of rumen fluid, collected using a transesophageal sampling device, were analyzed to determine the relative abundance of rumen microbial populations of cellulolytic bacteria, protozoa, and fungi. These are critically important for fermentation of feed into short-chain fatty acids. A decrease was observed in the relative abundance of Ruminococcus flavefaciens in the JE rumen compared with HF and JE × HF. We can deduce from this study that the JE genotype has greater digestibility and a different rumen microbial population than HF. Jersey and JE × HF cows had a proportionally greater GIT weight than HF. These differences are likely to contribute to the production efficiency differences among genotypes previously reported.
    • Genetic and nongenetic factors associated with milk color in dairy cows

      Scarso, S.; McParland, Sinead; Visentin, G.; Berry, Donagh; McDermott, A.; de Marchi, M.; European Union (Elsevier, 2017-07-12)
      Milk color is one of the sensory properties that can influence consumer choice of one product over another and it influences the quality of processed dairy products. This study aims to quantify the cow-level genetic and nongenetic factors associated with bovine milk color traits. A total of 136,807 spectra from Irish commercial and research herds (with multiple breeds and crosses) were used. Milk lightness (Lˆ*) , red-green index (aˆ*) and yellow-blue index (bˆ*) were predicted for individual milk samples using only the mid-infrared spectrum of the milk sample. Factors associated with milk color were breed, stage of lactation, parity, milking-time, udder health status, pasture grazing, and seasonal calving. (Co)variance components for Lˆ*,aˆ* , and bˆ* were estimated using random regressions on the additive genetic and within-lactation permanent environmental effects. Greater bˆ* value (i.e., more yellow color) was evident in milk from Jersey cows. Milk Lˆ* increased consistently with stage of lactation, whereas aˆ* increased until mid lactation to subsequently plateau. Milk bˆ* deteriorated until 31 to 60 DIM, but then improved thereafter until the end of lactation. Relative to multiparous cows, milk yielded by primiparae was, on average, lighter (i.e., greater Lˆ* ), more red (i.e., greater aˆ* ), and less yellow (i.e., lower bˆ* ). Milk from the morning milk session had lower Lˆ*,aˆ*, and bˆ* Heritability estimates (±SE) for milk color varied between 0.15 ± 0.02 (30 DIM) and 0.46 ± 0.02 (210 DIM) for Lˆ* , between 0.09 ± 0.01 (30 DIM) and 0.15 ± 0.02 (305 DIM) for aˆ* , and between 0.18 ± 0.02 (21 DIM) and 0.56 ± 0.03 (305 DIM) for bˆ* For all the 3 milk color features, the within-trait genetic correlations approached unity as the time intervals compared shortened and were generally <0.40 between the peripheries of the lactation. Strong positive genetic correlations existed between bˆ* value and milk fat concentration, ranging from 0.82 ± 0.19 at 5 DIM to 0.96 ± 0.01 at 305 DIM and confirming the observed phenotypic correlation (0.64, SE = 0.01). Results of the present study suggest that breeding strategies for the enhancement of milk color traits could be implemented for dairy cattle populations. Such strategies, coupled with the knowledge of milk color traits variation due to nongenetic factors, may represent a tool for the dairy processors to reduce, if not eliminate, the use of artificial pigments during milk manufacturing.
    • Genetic parameters for milk mineral content and acidity predicted by mid-infrared spectroscopy in Holstein–Friesian cows

      Toffanin, V.; Penasa, M.; McParland, Sinead; Berry, Donagh; Cassandro, M.; de Marchi, M. (Cambridge University PRess, 2015-01-13)
      The aim of the present study was to estimate genetic parameters for calcium (Ca), phosphorus (P) and titratable acidity (TA) in bovine milk predicted by mid-IR spectroscopy (MIRS). Data consisted of 2458 Italian Holstein−Friesian cows sampled once in 220 farms. Information per sample on protein and fat percentage, pH and somatic cell count, as well as test-day milk yield, was also available. (Co)variance components were estimated using univariate and bivariate animal linear mixed models. Fixed effects considered in the analyses were herd of sampling, parity, lactation stage and a two-way interaction between parity and lactation stage; an additive genetic and residual term were included in the models as random effects. Estimates of heritability for Ca, P and TA were 0.10, 0.12 and 0.26, respectively. Positive moderate to strong phenotypic correlations (0.33 to 0.82) existed between Ca, P and TA, whereas phenotypic weak to moderate correlations (0.00 to 0.45) existed between these traits with both milk quality and yield. Moderate to strong genetic correlations (0.28 to 0.92) existed between Ca, P and TA, and between these predicted traits with both fat and protein percentage (0.35 to 0.91). The existence of heritable genetic variation for Ca, P and TA, coupled with the potential to predict these components for routine cow milk testing, imply that genetic gain in these traits is indeed possible.
    • Genetic parameters of dairy cow energy intake and body energy status predicted using mid-infrared spectrometry of milk

      McParland, Sinead; Kennedy, Emer; Lewis, Eva; Moore, Stephen; McCarthy, Brian; O'Donovan, Michael; Berry, Donagh; Department of Agriculture, Food and the Marine, Ireland; European Commission; Marie Curie project International Research Staff Exchange Scheme SEQSEL; et al. (Elsevier for American Dairy Science Association, 2014-12)
      Energy balance (EB) and energy intake (EI) are heritable traits of economic importance. Despite this, neither trait is explicitly included in national dairy cow breeding goals due to a lack of routinely available data from which to compute reliable breeding values. Mid-infrared (MIR) spectrometry, which is performed during routine milk recording, is an accurate predictor of both EB and EI. The objective of this study was to estimate genetic parameters of EB and EI predicted using MIR spectrometry. Measured EI and EB were available for 1,102 Irish Holstein-Friesian cows based on actual feed intake and energy sink data. A subset of these data (1,270 test-day records) was used to develop equations to predict EI, EB, and daily change in body condition score (ΔBCS) and body weight (ΔBW) using the MIR spectrum with or without milk yield also as a predictor variable. Accuracy of cross-validation of the prediction equations was 0.75, 0.73, 0.77, and 0.70 for EI, EB, ΔBCS, and ΔBW, respectively. Prediction equations were applied to additional spectral data, yielding up to 94,653 records of MIR-predicted EI, EB, ΔBCS, and ΔBW available for variance component estimation. Variance components were estimated using repeatability animal linear mixed models. Heritabilities of MIR-predicted EI, EB, ΔBCS, and ΔBW were 0.20, 0.10, 0.07, and 0.06, respectively; heritability estimates of the respective measured traits were 0.35, 0.16, 0.07, and 0.08, respectively. The genetic correlation between measured and MIR-predicted EI was 0.84 and between measured and MIR-predicted EB was 0.54, indicating that selection based on MIR-predicted EI or EB would improve true EI or EB. Genetic and phenotypic associations between EI and both the milk production and body-change traits were generally in agreement, regardless of whether measured EI or MIR-predicted EI was considered. Higher-yielding animals of higher body weight had greater EI. Predicted EB was negatively genetically correlated with milk yield (genetic correlation = −0.29) and positively genetically correlated with both milk fat and protein percent (genetic correlation = 0.17 and 0.16, respectively). Least squares means phenotypic EI of 198 animals stratified as low, average, and high estimated breeding values for MIR-predicted EI (animal phenotypes were not included in the genetic evaluation) were 154.3, 156.0, and 163.3 MJ/d, corroborating that selection on MIR-predicted EI will, on average, result in differences in phenotypic true EI.
    • Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows

      Foley, Cathriona; Chapwanya, Aspinas; Creevey, Christopher J.; Narciandi, Fernando; Morris, Derek W.; Kenny, Elaine; Cormican, Paul; Callanan, John J; O'Farrelly, Cliona; Meade, Kieran G (Biomed Central, 2012-09-18)
      Background: All cows experience bacterial contamination and tissue injury in the uterus postpartum, instigating a local inflammatory immune response. However mechanisms that control inflammation and achieve a physiologically functioning endometrium, while avoiding disease in the postpartum cow are not succinctly defined. This study aimed to identify novel candidate genes indicative of inflammation resolution during involution in healthy beef cows. Previous histological analysis of the endometrium revealed elevated inflammation 15 days postpartum (DPP) which was significantly decreased by 30 DPP. The current study generated a genome-wide transcriptomic profile of endometrial biopsies from these cows at both time points using mRNA-Seq. The pathway analysis tool GoSeq identified KEGG pathways enriched by significantly differentially expressed genes at both time points. Novel candidate genes associated with inflammatory resolution were subsequently validated in additional postpartum animals using quantitative real-time PCR (qRT-PCR). Results: mRNA-Seq revealed 1,107 significantly differentially expressed genes, 73 of which were increased 15 DPP and 1,034 were increased 30 DPP. Early postpartum, enriched immune pathways (adjusted P < 0.1) included the T cell receptor signalling pathway, graft-versus-host disease and cytokine-cytokine receptor interaction pathways. However 30 DPP, where the majority of genes were differentially expressed, the enrichment (adjusted P < 0.1) of tissue repair and proliferative activity pathways was observed. Nineteen candidate genes selected from mRNA-Seq results, were independently assessed by qRT-PCR in additional postpartum cows (5 animals) at both time points. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes were significantly elevated 30 DPP and are functionally associated with tissue repair and the restoration of uterine homeostasis postpartum. Conclusions: The results of this study reveal an early activation of the immune response which undergoes a temporal functional change toward tissue proliferation and regeneration during endometrial involution in healthy postpartum cows. These molecular changes mirror the activation and resolution of endometrial inflammation during involution previously classified by the degree of neutrophil infiltration. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes may become potential markers for resolution of endometrial inflammation in the postpartum cow.
    • Good water status: The integration of sustainable grassland production and water resources in Ireland

      Richards, Karl G.; Fenton, Owen; Khalil, Mohammed I.; Haria, Atul H.; Humphreys, James; Doody, Donnacha G.; Moles, Richard; Morgan, Ger; Jordan, Philip; Department of Agriculture, Food and the Marine, Ireland; et al. (School of Agriculture, Food Science and Veterinary Medicine, University College Dublin in association with Teagasc, 2009)
      The challenge for sustainable grassland production is to integrate economically profitable farming systems with environmental protection. The Water Framework Directive aims to attain at least “good status” for all waters by 2015, to be achieved through the introduction of measures across all sectors of society. Historically, the impact of grassland agriculture on water quality was investigated in isolation. More recently it has been highlighted that water quality and other environmental impacts such as greenhouse gas emissions must be considered in an integrated manner. Catchment hydrology is critical to understanding the drivers behind nutrient transport to surface water and groundwaters. Flashy catchments are more susceptible to phosphorus, sediment and ammonium loss, whereas contrastingly baseflow dominated catchments are more susceptible to nitrate transport. Understanding catchment hydrology enables the targeting of measures for the mitigation of diffuse agricultural contaminants. This increased understanding can also be used to support extended deadlines for the achievement of good status. This paper reviews the potential effects of grassland agriculture on water quantity and the transport of pesticides and nutrients to water in the context of achieving good status for all waters by 2015 under the Water Framework Directive.
    • Grazing and ensiling of energy-rich grasses with elevated sugar contents for the sustainable production of ruminant livestock (Acronym: SweetGrass)

      O'Kiely, Padraig; Conaghan, Patrick; Howard, H.; Moloney, Aidan P; Black, Alistair D; European Union; QLK5-CT-2001-0498 (Teagasc, 2005-09-01)
      Permanent grassland dominates the Irish landscape and for many decades perennial ryegrasses have been the main constituent in seed mixtures for grassland.
    • Grazing Cow Behavior’s Association with Mild and Moderate Lameness

      O’Leary, Niall W.; Byrne, Daire. T.; Garcia, Pauline; Werner, Jessica; Cabedoche, Morgan; Shalloo, Laurence; Science Foundation Ireland; Department of Agriculture, Food and Marine; 13/IA/1977; 16/RC/3835 (MDPI AG, 2020-04-11)
      Accelerometer-based mobility scoring has focused on cow behaviors such as lying and walking. Accuracy levels as high as 91% have been previously reported. However, there has been limited replication of results. Here, measures previously identified as indicative of mobility, such as lying bouts and walking time, were examined. On a research farm and a commercial farm, 63 grazing cows’ behavior was monitored in four trials (16, 16, 16, and 15 cows) using leg-worn accelerometers. Seventeen good mobility (score 0), 23 imperfect mobility (score 1), and 22 mildly impaired mobility (score 2) cows were monitored. Only modest associations with activity, standing, and lying events were found. Thus, behavior monitoring appears to be insufficient to discern mildly and moderately impaired mobility of grazing cows.
    • Groundwater: A pathway for terrestrial C and N losses and indirect greenhouse gas emissions

      Jahangir, Mohammad M. R.; Johnston, Paul; Khalil, Mohammed I.; Hennessy, Deirdre; Humphreys, James; Fenton, Owen; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; Department of Civil, Structural and Environmental Engineering, Trinity College Dublin; RSF 06383 (Elsevier, 16/07/2012)
      Estimating losses of dissolved carbon (C) and nitrogen (N) via groundwater in an agricultural system provides insights into reducing uncertainties in the terrestrial C and N balances. In addition, quantification of dissolved nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) in groundwaters beneath agricultural systems is important for global greenhouse gas (GHG) budgets. Dissolved C (DC: dissolved organic carbon (DOC) + CO2-C + CH4-C) and dissolved nitrogen (DN: NO3−-N + NH4+ + NO2−-N + N2O-N + N2) in groundwater were measured in two low permeability (<0.02 m d−1) and two high permeability (>0.05 m d−1) aquifers in Ireland. Groundwater in multilevel piezometers was sampled monthly over two years. Mean groundwater discharge to surface water was higher in 2009 (587–836 mm) than in 2010 (326–385 mm). Dissolved C and N delivery to surface water via groundwater caused substantial losses of terrestrial C and N. The extent of delivery was site specific and depended on N input, recharge and aquifer permeability. Mean dissolved N losses ranged from 8–12% of N input in low permeability to 27–38% in high permeability aquifers. The dominant fraction of DN was NO3−-N (84–90% of DN) in high permeability aquifers and N2 (46–77% of DN) in low permeability aquifers. Indirect N2O emissions via groundwater denitrification accounted for 0.03–0.12% of N input, which was equivalent to 3–11% of total N2O emissions. Dissolved C loss to surface waters via groundwater was not significant compared to total carbon (TC) content of the topsoil (0.06–0.18% of TC). Site characteristics contributed greatly to the distribution of N between NO3−-N and dissolved N gases, N2O and N2. Indirect GHG emissions from groundwater were an important part of farm nutrient budgets, which clearly has implications for national GHG inventories.
    • GWAS and eQTL analysis identifies a SNP associated with both residual feed intake and GFRA2 expression in beef cattle

      Higgins, Marc G.; Fitzsimons, Clare; McClure, Matthew C.; McKenna, Clare; Conroy, S.B.; Kenny, David A.; McGee, Mark; Waters, Sinead M.; Morris, Derek W.; Department of Agriculture, Food and the Marine; et al. (Nature Publishing Group, 2018-09-24)
      Residual feed intake (RFI), a measure of feed efficiency, is an important economic and environmental trait in beef production. Selection of low RFI (feed efficient) cattle could maintain levels of production, while decreasing feed costs and methane emissions. However, RFI is a difficult and expensive trait to measure. Identification of single nucleotide polymorphisms (SNPs) associated with RFI may enable rapid, cost effective genomic selection of feed efficient cattle. Genome-wide association studies (GWAS) were conducted in multiple breeds followed by meta-analysis to identify genetic variants associated with RFI and component traits (average daily gain (ADG) and feed intake (FI)) in Irish beef cattle (n = 1492). Expression quantitative trait loci (eQTL) analysis was conducted to identify functional effects of GWAS-identified variants. Twenty-four SNPs were associated (P < 5 × 10−5) with RFI, ADG or FI. The variant rs43555985 exhibited strongest association for RFI (P = 8.28E-06). An eQTL was identified between this variant and GFRA2 (P = 0.0038) where the allele negatively correlated with RFI was associated with increased GFRA2 expression in liver. GFRA2 influences basal metabolic rates, suggesting a mechanism by which genetic variation may contribute to RFI. This study identified SNPs that may be useful both for genomic selection of RFI and for understanding the biology of feed efficiency.
    • Herd health status and management practices on 16 Irish suckler beef farms

      O'Shaughnessy, James; Mee, John F; Doherty, Michael L.; Crosson, Paul; Barrett, Damien; Grady, Luke; Earley, Bernadette; Teagasc Walsh Fellowship Programme (Biomed Central, 2013-11-06)
      Background: There have been few studies published internationally which document herd health management practices in suckler beef herds and no published Irish studies. The study objective was to document herd health status and management practices on sixteen Irish suckler beef herds over a two year period (2009–2010). The farms used in the study were part of the Teagasc BETTER farm beef programme. The mean (s.d.) herd size, stocking rate and farm size was 68 cows (27.6), 2.0 LU/ha (0.3) and 64.3 (21.6) adjusted hectares, respectively. Two questionnaires were designed; 1) a farmer questionnaire to collect information on farm background and current herd health control practices and 2) a veterinary questionnaire to collect information on the extent of animal health advice given by veterinarians to their clients and identification of any on-farm herd health issues. Results: Dystocia, calf pneumonia, and calf diarrhoea, in that order, were identified as the primary herd health issues in these Irish suckler beef herds. In addition, substantial deficiencies in biosecurity practices were also identified on these farms. Conclusions: The findings of this study may serve as the focus for future research in animal health management practices in Irish suckler beef herds.
    • How herd best linear unbiased estimates affect the progress achievable from gains in additive and nonadditive genetic merit

      Dunne, F. L.; McParland, Sinead; Kelleher, Margaret M.; Walsh, S.W.; Berry, Donagh; Science Foundation Ireland; Department of Agriculture, Food and the Marine; 16/RC/3835 (Elsevier, 2019-04-10)
      Sustainable dairy cow performance relies on coevolution in the development of breeding and management strategies. Tailoring breeding programs to herd performance metrics facilitates improved responses to breeding decisions. Although herd-level raw metrics on performance are useful, implicitly included within such statistics is the mean herd genetic merit. The objective of the present study was to quantify the expected response from selection decisions on additive and nonadditive merit by herd performance metrics independent of herd mean genetic merit. Performance traits considered in the present study were age at first calving, milk yield, calving to first service, number of services, calving interval, and survival. Herd-level best linear unbiased estimates (BLUE) for each performance trait were available on a maximum of 1,059 herds, stratified as best, average, and worst for each performance trait separately. The analyses performed included (1) the estimation of (co)variance for each trait in the 3 BLUE environments and (2) the regression of cow-level phenotypic performance on either the respective estimated breeding value (EBV) or the heterosis coefficient of the cow. A fundamental assumption of genetic evaluations is that 1 unit change in EBV equates to a 1 unit change in the respective phenotype; results from the present study, however, suggest that the realization of the change in phenotypic performance is largely dependent on the herd BLUE for that trait. Herds achieving more yield, on average, than expected from their mean genetic merit, had a 20% greater response to changes in EBV as well as 43% greater genetic standard deviation relative to herds within the worst BLUE for milk yield. Conversely, phenotypic performance in fertility traits (with the exception of calving to first service) tended to have a greater response to selection as well as a greater additive genetic standard deviation within the respective worst herd BLUE environments; this is suggested to be due to animals performing under more challenging environments leading to larger achievable gains. The attempts to exploit nonadditive genetic effects such as heterosis are often the basis of promoting cross-breeding, yet the results from the present study suggest that improvements in phenotypic performance is largely dependent on the environment. The largest gains due to heterotic effects tended to be within the most stressful (i.e., worst) BLUE environment for all traits, thus suggesting the heterosis effects can be beneficial in mitigating against poorer environments.
    • How much grassland biomass is available in Ireland in excess of livestock requirements?

      McEniry, Joseph; Crosson, Paul; Finneran, Eoghan; McGee, Mark; Keady, Tim; O'Kiely, Padraig; Department of Agriculture, Food and the Marine; RSF 07 557 (Teagasc (Agriculture and Food Development Authority), Ireland, 2013)
      Grassland is a dominant biomass resource in Ireland and underpins most animal production systems. However, other commercial uses for grassland biomass exist, including, for example, the production of biogas through anaerobic digestion for the generation of heat, electricity and transport fuel. The objective of this study was to estimate the annual grassland resource available in Ireland in excess of livestock requirements under six contrasting scenarios. Under current grassland management and production practices there is an estimated average annual grassland resource of ca. 1.7 million tonnes of dry matter (DM) available in excess of livestock requirements. Only a small proportion of this resource (0.39 million tonnes of DM per annum) would be available if the targets set out in ‘Food Harvest 2020’ were achieved. However, increasing nitrogen (N) fertiliser input (to the limit permitted by the E.U. Nitrates Directive) combined with increasing the grazed grass utilisation rate of cattle (from 0.60 to 0.80 kg DM ingested by livestock per kg DM grown) has the potential to significantly increase this average resource to 12.2 million t DM/annum, even when allowing for achievement of ‘Food Harvest 2020’ targets. Under these scenarios, alternative uses for grassland biomass such as anaerobic digestion and green biorefining would not compete with traditional dairy, beef and lamb production systems, but could provide an alternative enterprise and income to farmers.
    • Identification of possible cow grazing behaviour indicators for restricted grass availability in a pasture-based spring calving dairy system

      Werner, Jessica; Umstatter, Christina; Kennedy, Emer; Grant, Jim; Leso, Lorenzo; Geoghegan, Anne; Shalloo, Laurence; Schick, Matthias; O'Brien, Bernadette; Science Foundation Ireland; et al. (Elsevier, 2018-12-05)
      Precision livestock farming uses biosensors to measure different parameters of individual animals to support farmers in the decision making process. Although sensor development is advanced, there is still little implementation of sensor-based solutions on commercial farms. Especially on pasture-based dairy systems, the grazing management of cows is largely not supported by technology. A key factor in pasture-based milk production is the correct grass allocation to maximize the grass utilization per cow, while optimizing cow performance. Currently, grass allocation is mostly based on subjective eye measurements or calculations per herd. The aim of this study was to identify possible indicators of insufficient or sufficient grass allocation in the cow grazing behaviour measures. A total number of 30 cows were allocated a restricted pasture allowance of 60% of their intake capacity. Their behavioural characteristics were compared to those of 10 cows (control group) with pasture allowance of 100% of their intake capacity. Grazing behaviour and activity of cows were measured using the RumiWatchSystem for a complete experimental period of 10 weeks. The results demonstrated that the parameter of bite frequency was significantly different between the restricted and the control groups. There were also consistent differences observed between the groups for rumination time per day, rumination chews per bolus and frequency of cows standing or lying.
    • Improving Farm Sustainability: Practical Tools for Farmers

      Teagasc (Teagasc, 2019-05-03)
      Irish agriculture rightly has a global reputation for high environmental standards. However, these standards continue to become more stringent, and the expansion in dairying since milk quota removal is adding further pressure. Early action is key to meeting the environmental challenges of reducing greenhouse gas and ammonia emissions, increasing carbon capture, improving water quality, protecting and improving biodiversity. There are a range of farm practices that dairy farmers can implement easily on their farms that can combine profitability gains while contributing to meeting these sustainability challenges. Some of these are outlined in this practical guide of what you can do on your farm to help meet the environmental challenges.
    • Improving robustness and accuracy of predicted daily methane emissions of dairy cows using milk mid‐infrared spectra

      Vanlierde, Amélie; Dehareng, Frédéric; Gengler, Nicolas; Froidmont, Eric; McParland, Sinead; Kreuzer, Michael; Bell, Matthew; Lund, Peter; Martin, Cécile; Kuhla, Björn; et al. (Wiley, 2020-11-22)
      BACKGROUND A robust proxy for estimating methane (CH4) emissions of individual dairy cows would be valuable especially for selective breeding. This study aimed to improve the robustness and accuracy of prediction models that estimate daily CH4 emissions from milk Fourier transform mid‐infrared (FT‐MIR) spectra by (i) increasing the reference dataset and (ii) adjusting for routinely recorded phenotypic information. Prediction equations for CH4 were developed using a combined dataset including daily CH4 measurements (n = 1089; g d−1) collected using the SF6 tracer technique (n = 513) and measurements using respiration chambers (RC, n = 576). Furthermore, in addition to the milk FT‐MIR spectra, the variables of milk yield (MY) on the test day, parity (P) and breed (B) of cows were included in the regression analysis as explanatory variables. RESULTS Models developed based on a combined RC and SF6 dataset predicted the expected pattern in CH4 values (in g d−1) during a lactation cycle, namely an increase during the first weeks after calving followed by a gradual decrease until the end of lactation. The model including MY, P and B information provided the best prediction results (cross‐validation statistics: R2 = 0.68 and standard error = 57 g CH4 d−1). CONCLUSIONS The models developed accounted for more of the observed variability in CH4 emissions than previously developed models and thus were considered more robust. This approach is suitable for large‐scale studies (e.g. animal genetic evaluation) where robustness is paramount for accurate predictions across a range of animal conditions. © 2020 Society of Chemical Industry
    • Imputation of ungenotyped parental genotypes in dairy and beef cattle from progeny genotypes

      Berry, Donagh; McParland, Sinead; Kearney, J.F.; Sargolzaei, Mehdi; Mullen, Michael P.; Department of Agriculture, Food and the Marine, Ireland; Science Foundation Ireland; European Union; RSF-06-0353; RSF-06-0428; et al. (Cambridge University Press, 2014-04-09)
      The objective of this study was to quantify the accuracy of imputing the genotype of parents using information on the genotype of their progeny and a family-based and population-based imputation algorithm. Two separate data sets were used, one containing both dairy and beef animals (n = 3122) with high-density genotypes (735 151 single nucleotide polymorphisms (SNPs)) and the other containing just dairy animals (n = 5489) with medium-density genotypes (51 602 SNPs). Imputation accuracy of three different genotype density panels were evaluated representing low (i.e. 6501 SNPs), medium and high density. The full genotypes of sires with genotyped half-sib progeny were masked and subsequently imputed. Genotyped half-sib progeny group sizes were altered from 4 up to 12 and the impact on imputation accuracy was quantified. Up to 157 and 258 sires were used to test the accuracy of imputation in the dairy plus beef data set and the dairy-only data set, respectively. The efficiency and accuracy of imputation was quantified as the proportion of genotypes that could not be imputed, and as both the genotype concordance rate and allele concordance rate. The median proportion of genotypes per animal that could not be imputed in the imputation process decreased as the number of genotyped half-sib progeny increased; values for the medium-density panel ranged from a median of 0.015 with a half-sib progeny group size of 4 to a median of 0.0014 to 0.0015 with a half-sib progeny group size of 8. The accuracy of imputation across different paternal half-sib progeny group sizes was similar in both data sets. Concordance rates increased considerably as the number of genotyped half-sib progeny increased from four (mean animal allele concordance rate of 0.94 in both data sets for the medium-density genotype panel) to five (mean animal allele concordance rate of 0.96 in both data sets for the medium-density genotype panel) after which it was relatively stable up to a half-sib progeny group size of eight. In the data set with dairy-only animals, sufficient sires with paternal half-sib progeny groups up to 12 were available and the withinanimal mean genotype concordance rates continued to increase up to this group size. The accuracy of imputation was worst for the low-density genotypes, especially with smaller half-sib progeny group sizes but the difference in imputation accuracy between density panels diminished as progeny group size increased; the difference between high and medium-density genotype panels was relatively small across all half-sib progeny group sizes. Where biological material or genotypes are not available on individual animals, at least five progeny can be genotyped (on either a medium or high-density genotyping platform) and the parental alleles imputed with, on average, ⩾96% accuracy.
    • Infrared thermography as a tool to detect hoof lesions in sheep

      Byrne, Daire T; Berry, Donagh; Esmonde, Harold; McGovern, Fiona; Creighton, Philip; McHugh, Noirin; Department of Agriculture, Food, and the Marine; RSF 11/S/133 (Oxford University Press (OUP), 2018-12-08)
      Lameness has a major negative impact on sheep production. The objective of this study was to 1) quantify the repeatability of sheep hoof temperatures estimated using infrared thermography (IRT); 2) determine the relationship between ambient temperature, sheep hoof temperature, and sheep hoof health status; and 3) validate the use of IRT to detect infection in sheep hooves. Three experiments (a repeatability, exploratory, and validation experiment) were conducted over 10 distinct nonconsecutive days. In the repeatability experiment, 30 replicate thermal images were captured from each of the front and back hooves of nine ewes on a single day. In the exploratory experiment, hoof lesion scores, locomotion scores, and hoof thermal images were recorded every day from the same cohort of 18 healthy ewes in addition to a group of lame ewes, which ranged from one to nine ewes on each day. Hoof lesion and locomotion scores were blindly recorded by three independent operators. In the validation experiment, all of the same procedures from the exploratory experiment were applied to a new cohort of 40 ewes across 2 d. The maximum and average temperature of each hoof was extracted from the thermal images. Repeatability of IRT measurements was assessed by partitioning the variance because of ewe and error using mixed models. The relationship between ambient temperature, hoof temperature, and hoof health status was quantified using mixed models. The percentage of hooves correctly classified as healthy (i.e., specificity) and infected (i.e., sensitivity) was calculated for a range of temperature thresholds. Results showed that a small-to-moderate proportion of the IRT-estimated temperature variability in a given hoof was due to error (1.6% to 20.7%). A large temperature difference (8.5 °C) between healthy and infected hooves was also detected. The maximum temperature of infected hooves was unaffected by ambient temperature (P > 0.05), whereas the temperature of healthy hooves was associated with ambient temperature. The best sensitivity (92%) and specificity (91%) results in the exploratory experiment were observed when infected hooves were defined as having a maximum hoof temperature ≥9 °C above the average of the five coldest hooves in the flock on that day. When the same threshold was applied to the validation dataset, a sensitivity of 77% and specificity of 78% was achieved, indicating that IRT could have the potential to detect infection in sheep hooves.
    • Intake, growth and carcass traits in male progeny of sires differing in genetic merit for beef production

      Clarke, Anne Marie; Drennan, Michael J; McGee, Mark; Kenny, David A.; Evans, R. D.; Berry, Donagh (Cambridge University Press, 2009-06)
      Validation of economic indexes under a controlled experimental environment, can aid in their acceptance and use as breeding tools to increase herd profitability. The objective of this study was to compare intake, growth and carcass traits in bull and steer progeny of high and low ranking sires, for genetic merit in an economic index. The Beef Carcass Index (BCI; expressed in euro (€) and based on weaning weight, feed intake, carcass weight, carcass conformation and fat scores) was generated by the Irish Cattle Breeding Federation as a tool to compare animals on genetic merit for the expected profitability of their progeny at slaughter. A total of 107 male suckler herd progeny, from 22 late-maturing ‘continental’ beef sires of high (n = 11) or low (n = 11) BCI were compared under either a bull or steer production system, and slaughtered at approximately 16 and 24 months of age, respectively. All progeny were purchased after weaning at approximately 6 to 8 months of age. Dry matter (DM) intake and live-weight gain in steer progeny offered grazed grass or grass silage alone, did not differ between the two genetic groups. Similarly, DM intake and feed efficiency did not differ between genetic groups during an ad libitum concentrate-finishing period on either production system. Carcasses of progeny of high BCI sires were 14 kg heavier (P < 0.05) than those of low BCI sires. In a series of regression analyses, increasing sire BCI resulted in increases in carcass weight (P < 0.01) and carcass conformation (P = 0.051) scores, and decreases in carcass fat (P < 0.001) scores, but had no effect on weaning weight or DM intake of the progeny. Each unit increase in sire expected progeny difference led to an increase in progeny weaning weight, DM intake, carcass weight, carcass conformation score and carcass fat score of 1.0 (s.e. = 0.53) kg, 1.1 (s.e. = 0.32) kg, 1.3 (s.e. = 0.31) kg, 0.9 (s.e. = 0.32; scale 1 to 15) and 1.0 (s.e. = 0.25; scale 1 to 15), respectively, none of which differed from the theoretical expectation of unity. The expected difference in profitability at slaughter between progeny of the high and low BCI sires was €42, whereas the observed phenotypic profit differential of the progeny was €53 in favour of the high BCI sires. Results from this study indicate that the BCI is a useful tool in the selection of genetically superior sires, and that actual progeny performance under the conditions of this study is within expectations for both bull and steer beef production systems.
    • Integrated analysis of the local and systemic changes preceding the development of post-partum cytological endometritis

      Foley, Cathriona; Chapwanya, Aspinas; Callanan, John J; Whiston, Ronan; Miranda-CasoLuengo, Raúl; Lu, Junnan; Meijer, Wim G; Lynn, David J; O'Farrelly, Cliona; Meade, Kieran G (Biomed Central, 2015-10-19)
      Background The regulation of endometrial inflammation has important consequences for the resumption of bovine fertility postpartum. All cows experience bacterial influx into the uterus after calving; however a significant proportion fail to clear infection leading to the development of cytological endometritis (CE) and compromised fertility. We hypothesised that early immunological changes could not only act as potential prognostic biomarkers for the subsequent development of disease but also shed light on the pathogenesis of endometritis in the postpartum dairy cow. Methods Endometrial biopsy RNA was extracted from 15 cows at 7 and 21 days postpartum (DPP), using the Qiagen RNeasy® Plus Mini kit and quality determined using an Agilent 2100 bioanalyser. Disease status was determined by histpathology based on inflammatory cell infiltrate. RNA-seq of both mRNA and miRNA libraries were performed on an Illumina® HiSeq™ 2000. Paired reads were aligned to the bovine genome with Bowtie2 and differentially expressed genes were identified using EdgeR. Significantly over-represented Gene Ontology terms were identified using GO-seq, and pathway analysis was performed using KEGG. Quanititative real-time PCR was also performed for validation (ABI 7500 fast). Haematology was assessed using an automated ADVIA 2120 analyser. Serum proteins were evaluated by ELISA and metabolite analysis was performed using a Beckman Coulter AU 400 clinical analyser. Terminal-restriction fragment length polymorphism (T-RFLP) was used to obtain fingerprints of the microbial communities present. Results Next-generation sequencing from endometrial biopsies taken at 7 DPP identified significant induction of inflammatory gene expression in all cows. Despite the common inflammatory profile and enrichment of the Toll-like receptor and NFκB pathways, 73 genes and 31 miRNAs were significantly differentially expressed between healthy cows (HC, n = 9) and cows which subsequently developed CE at 7 DPP (n = 6, FDR < 0.1). While significant differential expression of 4197 genes in the transcriptome of healthy cows between 7 and 21 DPP showed the transition from a proinflammatory to tissue profliferation and repair, only 31 genes were differentially expressed in cows with CE (FDR < 0.1), indicating the arrest of such a transition. A link betwene the dysregulated inflammatory response and the composition of the uterine microbial communities was suggested by the presence of significant differences in uterine bacterial tRFLP profiles between HC and CE groups. Furthermore, inflammatory activity was not confined to the uterus; decreased circulating granulocytes and increased Acute Phase Protein (SAA and HP) expression levels were detected in plasma at 7 DPP in cows that developed CE. Conclusion Our data suggests that the IL1 and IL17 inflammatory cascade activated early postpartum is resolved thereby restoring homeostasis in healthy cows by 21 DPP, but this transition fails to occur in cows which develop CE. Despite a common early inflammatory profile, elevated and differential expression of specific immune genes may identify cows at risk of prolonged inflammation and the development of CE postpartum.