• Conservation characteristics of baled grass silages differing in duration of wilting, bale density and number of layers of plastic stretch-film

      Keles, G.; O'Kiely, Padraig; Lenehan, J.J.; Forristal, P.D. (Teagasc, Oak Park, Carlow, Ireland, 2009)
      The effects of duration of wilting, bale density and number of layers of plastic stretchfilm used to wrap bales on the conservation characteristics of baled grass silage was investigated. Grass from the primary growth of a Lolium perenne dominant sward was wilted for 24, 48 or 72 h. For each duration of wilting, 54 cylindrical bales (1.2 m nominal diameter) were made with the baler at a high or low density setting for alternate bales. Bales were wrapped with 2, 4 or 6 layers of plastic stretch-film and stored outdoors for 295 days. Two layers of plastic stretch-film resulted in inferior preservation, lower digestibility and extensive mould growth and deteriorated silage. Substantial improvement occurred to each of these characteristics from applying four layers of stretch-film (P<0.05), while six layers of stretch-film brought little further improvement. When four or six layers of stretch-film were used, extensive wilting restricted fermentation and improved the standard of preservation with the apparently difficult-to-preserve herbage used in this experiment. However, under the anaerobic conditions provided by four or six layers of stretch-film neither progressive wilting nor bale density had a major effect on digestibility, or the extent of surface mould growth or deteriorated silage. It can be concluded that a minimum of four layers of conventional black plastic stretch-film were required to achieve suitably anaerobic conditions, and that the additional benefits from six layers were small. Once anaerobic conditions were achieved, extensive wilting improved the conservation characteristics of baled grass silage made from a difficult-to-preserve crop, whereas bale density had little impact.
    • Crop Establishment Practices Are a Driver of the Plant Microbiota in Winter Oilseed Rape (Brassica napus)

      Rathore, Ridhdhi; Dowling, David N.; Forristal, P.D.; Spink, John; Cotter, Paul D.; Bulgarelli, Davide; Germaine, Kieran J.; Teagasc Walsh Fellowship Programme; Marie Curie Actions; Royal Society of Edinburgh/Scottish Government Personal Research Fellowship (Frontiers, 2017-08-09)
      Gaining a greater understanding of the plant microbiota and its interactions with its host plant heralds a new era of scientific discovery in agriculture. Different agricultural management practices influence soil microbial populations by changing a soil’s physical, chemical and biological properties. However, the impact of these practices on the microbiota associated with economically important crops such as oilseed rape, are still understudied. In this work we investigated the impact of two contrasting crop establishment practices, conventional (plow based) and conservation (strip–tillage) systems, on the microbiota inhabiting different plant microhabitats, namely rhizosphere, root and shoot, of winter oilseed rape under Irish agronomic conditions. Illumina 16S rRNA gene sequence profiling showed that the plant associated microhabitats (root and shoot), are dominated by members of the bacterial phyla Proteobacteria, Actinobacteria and Bacteroidetes. The root and shoot associated bacterial communities displayed markedly distinct profiles as a result of tillage practices. We observed a very limited ‘rhizosphere effect’ in the root zone of WOSR, i.e., there was little or no increase in bacterial community richness and abundance in the WOSR rhizosphere compared to the bulk soil. The two tillage systems investigated did not appear to lead to any major long term differences on the bulk soil or rhizosphere bacterial communities. Our data suggests that the WOSR root and shoot microbiota can be impacted by management practices and is an important mechanism that could allow us to understand how plants respond to different management practices and environments.
    • Crop Establishment Practices Are a Driver of the Plant Microbiota in Winter Oilseed Rape (Brassica napus)

      Rathore, Ridhdhi; Dowling, David N.; Forristal, P.D.; Spink, John; Cotter, Paul D.; Bulgarelli, Davide; Germaine, Kieran J.; Teagasc Walsh Fellowship Programme; Royal Society of Edinburgh/Scottish Government Personal Research Fellowship (Frontiers, 2017-08-09)
      Gaining a greater understanding of the plant microbiota and its interactions with its host plant heralds a new era of scientific discovery in agriculture. Different agricultural management practices influence soil microbial populations by changing a soil’s physical, chemical and biological properties. However, the impact of these practices on the microbiota associated with economically important crops such as oilseed rape, are still understudied. In this work we investigated the impact of two contrasting crop establishment practices, conventional (plow based) and conservation (strip–tillage) systems, on the microbiota inhabiting different plant microhabitats, namely rhizosphere, root and shoot, of winter oilseed rape under Irish agronomic conditions. Illumina 16S rRNA gene sequence profiling showed that the plant associated microhabitats (root and shoot), are dominated by members of the bacterial phyla Proteobacteria, Actinobacteria and Bacteroidetes. The root and shoot associated bacterial communities displayed markedly distinct profiles as a result of tillage practices. We observed a very limited ‘rhizosphere effect’ in the root zone of WOSR, i.e., there was little or no increase in bacterial community richness and abundance in the WOSR rhizosphere compared to the bulk soil. The two tillage systems investigated did not appear to lead to any major long term differences on the bulk soil or rhizosphere bacterial communities. Our data suggests that the WOSR root and shoot microbiota can be impacted by management practices and is an important mechanism that could allow us to understand how plants respond to different management practices and environments.
    • The Double Spade Method: a ‘mini-profile’ visual soil evaluation technique

      Emmet-Booth, J.P.; Forristal, P.D.; Fenton, Owen; Bondi, G.; Holden, N.M (2021-11-23)
      Visual Soil Evaluation (VSE) methods are established for soil quality assessment and focus on the examination of soil structure and associated anthropogenic impacts. VSE techniques, of which numerous types exist, are successfully used internationally both in soil research and as sustainable soil management tools. Techniques are generally categorised into profile and spade methods. Profile methods examine entire soil profiles in soil-pits to depths of ~ 1.5 m, exploring interactions between inherent soil features and anthropic management at specific sample points. Spade methods examine the upper soil profile, often by extracting sample blocks of topsoil by spade and focus on anthropic impacts. The VESS method (Guimarães et al., 2011) is a widely used spade method and involves assessment of soil sample blocks to 25 cm depth. However, in arable soils, important structural features may occur just below this depth such as plough pans, which VESS may not capture. The SubVESS method (Ball et al., 2015) follows principles of VESS but allows assessment to ~ 1 m depth. However, the later involves soil-pit excavation by mechanical means, which may be destructive, costly, time consuming and limit replication. When used in on-farm situations by farmers or advisors, full soil-pit excavation may not be desirable. Here we describe a method previously outlined (Emmet-Booth et al. 2018) called the Double Spade Method (DS) designed to examine miniprofiles in soil pits to 40 cm depth, therefore capturing potential structural features below the VESS assessment depth, without requiring full soil-pit excavation.
    • Exploring the sensitivity of visual soil evaluation to traffic-induced soil compaction

      Emmet-Booth, J.P.; Holden, N.M.; Fenton, Owen; Bondi, G; Forristal, P.D.; Irish Department of Agriculture, Food and the Marine; 13/S/468 (Elsevier, 2019-10-24)
      Visual Soil Evaluation (VSE) techniques are useful for assessing the impact of land management, particularly the identification and remediation of soil compaction. Despite an increasing body of VSE research, comparatively few studies have explored the sensitivity of VSE for capturing experimentally imposed compaction to estimate sensitivity and limit of detection. The aim of this research was to examine the ability of VSE techniques to indicate soil structure at different soil profile depths and to measure the associated soil productive function (yield) response to imposed compaction. A two-year experiment was conducted on sites with loam and sandy soils. Varying levels of wheeled traffic were imposed on plots in a randomised block design, prior to sowing winter barley (Hordeum vulgare L.). Quantitative crop and soil measurements were taken throughout the season in conjunction with VSE techniques, which assessed to 25 cm (VESS), 40 cm (Double Spade) and 80 cm (SubVESS) depth. Graduated changes were observed by soil and some crop quantitative measurements as traffic treatment varied. VESS and Double Spade successfully identified a graduated treatment effect at all sites to 40 cm depth, although diagnosis translated into a yield response for the loam but not the sandy soil. Correlation between VESS Sq scores and crop yield were found. SubVESS gave mixed signals and indicated impacts lower in the profile in certain instances. These impacts were not captured by quantitative soil measurements.This work highlights the capacity for VSE techniques to indicate soil structural damage, which may cause a crop yield response, therefore allowing appropriate soil management strategies to be deployed before yield penalties occur.
    • Factors influencing the conservation characteristics of baled and precision-chop grass silages

      McEniry, Joseph; Forristal, P.D.; O'Kiely, Padraig (Teagasc (Agriculture and Food Development Authority), Ireland, 2011)
      The composition of baled silage on Irish farms frequently differs from that of comparable precision-chop silage. This paper concerns a field-scale study designed to investigate: (a) the effects of number of layers (2, 4, 6 or 8) of polyethylene stretch film and the duration of storage (7 vs. 18 months) on the conservation characteristics of baled silage, and (b) the conservation characteristics of baled (4 layers of stretch film) and precision-chop silages. All silages were made following three durations of wilting (0, 24 or 48 h). Wilting restricted silage fermentation, with silage pH being highest (P<0.001) and the concentration of fermentation products lowest (P<0.001) for the 48 h wilt treatment. Wrapping bales in only 2 layers of polyethylene stretch film resulted in extensive visible mould growth, but mould growth was practically eliminated by the application of 4 or more layers of film. Silage fermentation characteristics were generally improved by wilting, and by 4 compared to 2 layers of stretch film. Extending the storage duration of baled silage from 7 to 18 months reduced (P<0.001) the concentration of fermentation products and increased in-silo fresh weight losses (P<0.001) and visible mould growth. Whereas 4 layers of conventional stretch film are normally sufficient, 6 layers may be necessary to prevent mould growth when bales of unwilted silage are stored for a second season. Under good farm-management conditions differences observed between baled and precision-chop silages probably result mainly from differences in the concentration of dry matter in herbage at ensiling.
    • Manipulating the ensilage of wilted, unchopped grass through the use of additive treatments

      McEniry, Joseph; O'Kiely, Padraig; Clipson, Nicholas J.W.; Forristal, P.D.; Doyle, Evelyn M.; Teagasc Walsh Fellowship Programme (Teagasc, Oak Park, Carlow, Ireland, 2007)
      Baled silage composition frequently differs from that of comparable conventional precision-chop silage. The lower final concentration of fermentation products in baled silage makes it more conducive to the activities of undesirable microorganisms. Silage additives can be used to encourage beneficial microbial activity and/or inhibit detrimental microbial activity. The experiment was organised in a 2 (chop treatments) × 6 (additive treatments) × 2 (stages of ensilage) factorial arrangement of treatments (n = 3 silos/treatment) to suggest additive treatments for use in baled silage production that would help create conditions more inhibitory to the activities of undesirable microorganisms and realise an outcome comparable to precision-chop silage. Chopping the herbage prior to ensiling, in the absence of an additive treatment, improved the silage fermentation. In the unchopped herbage, where the fermentation was poorer, the lactic acid bacterial inoculant resulted in an immediate increase (P < 0.001) in lactic acid concentration and a faster decline (P < 0.001) in pH with a subsequent reduction in butyric acid (P < 0.001) and ammonia-N (P < 0.01) concentrations. When sucrose was added in addition to the lactic acid bacterial inoculant, the combined treatment had a more pronounced effect on pH, butyric acid and ammonia-N values at the end of ensilage. The formic acid based additive and the antimicrobial mixture restricted the activities of undesirable microorganisms resulting in reduced concentrations of butyric acid (P < 0.001) and ammonia-N (P < 0.01). These additives offer a potential to create conditions in baled silage more inhibitory to the activities of undesirable microorganisms.
    • The microbiological and chemical composition of baled and precision-chop silages on a sample of farms in County Meath

      McEniry, Joseph; O'Kiely, Padraig; Clipson, Nicholas J.W.; Forristal, P.D.; Doyle, Evelyn M.; Teagasc Walsh Fellowship Programme; (Teagasc, Oak Park, Carlow, Ireland, 2006)
      Baled and precision-chop silages were examined on a sample of farms in the Irish midlands to determine microbiological and chemical composition at feedout. Silage making practices and chemical composition were similar to those in national surveys. Wilting was an integral part of baled silage production and was reflected in a more restricted fermentation (higher pH and water-soluble carbohydrates, with lower fermentation acids and buffering capacity) compared to precision-chop silage. Yeast numbers were higher in baled silage, suggesting a more aerobic environment within the bale. Although the fermentation appeared similar in the outer and inner horizons of baled silage, yeast, lactic acid bacteria and Enterobacteria numbers were higher in the outer horizon suggesting less exacting anaerobiosis adjacent to the surface of the bale.
    • A note on the conservation characteristics of baled grass silages ensiled with different additives.

      Keles, G.; O'Kiely, Padraig; Forristal, P.D. (Teagasc, Oak Park, Carlow, Ireland, 2010)
      The effects of contrasting conventional silage additives on chemical composition, aerobic stability and deterioration, and mould development in baled silage were investigated. Herbage from a grassland sward was wilted for 24 h and treated with acid (formic or sulphuric), sugar (molasses), bacterial (Lactobacillus plantarum, L. plantarum + Serratia rubidaea + Bacillus subtilis, or L. buchneri) or sugar + bacterial (molasses + L. plantarum) additives prior to baling and wrapping. Silage made without an additive preserved well and had a low incidence of mould growth, and the effects of additives were minor or absent. It is concluded that little practical benefit was realised when conventional additives were applied to wilted, leafy, easy-to-ensile grass prior to baling and ensilage.