• Genomic prediction of crown rust resistance in Lolium perenne

      Arojju, Sai Krishna; Conaghan, Patrick; Barth, Susanne; Milbourne, Dan; Casler, M.D.; Hodkinson, Trevor R; Michel, Thibauld; Byrne, Stephen L.; Department of Agriculture, Food and the Marine, Ireland; Marie Sklodowska-Curie; et al. (Biomed Central, 29/05/2018)
      Background Genomic selection (GS) can accelerate genetic gains in breeding programmes by reducing the time it takes to complete a cycle of selection. Puccinia coronata f. sp lolli (crown rust) is one of the most widespread diseases of perennial ryegrass and can lead to reductions in yield, persistency and nutritional value. Here, we used a large perennial ryegrass population to assess the accuracy of using genome wide markers to predict crown rust resistance and to investigate the factors affecting predictive ability. Results Using these data, predictive ability for crown rust resistance in the complete population reached a maximum of 0.52. Much of the predictive ability resulted from the ability of markers to capture genetic relationships among families within the training set, and reducing the marker density had little impact on predictive ability. Using permutation based variable importance measure and genome wide association studies (GWAS) to identify and rank markers enabled the identification of a small subset of SNPs that could achieve predictive abilities close to those achieved using the complete marker set. Conclusion Using a GWAS to identify and rank markers enabled a small panel of markers to be identified that could achieve higher predictive ability than the same number of randomly selected markers, and predictive abilities close to those achieved with the entire marker set. This was particularly evident in a sub-population characterised by having on-average higher genome-wide linkage disequilibirum (LD). Higher predictive abilities with selected markers over random markers suggests they are in LD with QTL. Accuracy due to genetic relationships will decay rapidly over generations whereas accuracy due to LD will persist, which is advantageous for practical breeding applications.
    • Markers associated with heading and aftermath heading in perennial ryegrass full-sib families

      Arojju, Sai Krishna; Barth, Susanne; Milbourne, Dan; Conaghan, Patrick; Velmurugan, Janaki; Hodkinson, Trevor R; Byrne, Stephen L.; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; EU Marie-Sklodowska-Curie Fellowship; et al. (Biomed Central, 16/07/2016)
      Background Heading and aftermath heading are important traits in perennial ryegrass because they impact forage quality. So far, genome-wide association analyses in this major forage species have only identified a small number of genetic variants associated with heading date that overall explained little of the variation. Some possible reasons include rare alleles with large phenotypic affects, allelic heterogeneity, or insufficient marker density. We established a genome-wide association panel with multiple genotypes from multiple full-sib families. This ensured alleles were present at the frequency needed to have sufficient statistical power to identify associations. We genotyped the panel via partial genome sequencing and performed genome-wide association analyses with multi-year phenotype data collected for heading date, and aftermath heading. Results Genome wide association using a mixed linear model failed to identify any variants significantly associated with heading date or aftermath heading. Our failure to identify associations for these traits is likely due to the extremely low linkage disequilibrium we observed in this population. However, using single marker analysis within each full-sib family we could identify markers and genomic regions associated with heading and aftermath heading. Using the ryegrass genome we identified putative orthologs of key heading genes, some of which were located in regions of marker-trait associations. Conclusion Given the very low levels of LD, genome wide association studies in perennial ryegrass populations are going to require very high SNP densities. Single marker analysis within full-sibs enabled us to identify significant marker-trait associations. One of these markers anchored proximal to a putative ortholog of TFL1, homologues of which have been shown to play a key role in continuous heading of some members of the rose family, Rosaceae.
    • An Optimized Chloroplast DNA Extraction Protocol for Grasses (Poaceae) Proves Suitable for Whole Plastid Genome Sequencing and SNP Detection

      Diekmann, Kerstin; Hodkinson, Trevor R; Fricke, Evelyn; Barth, Susanne; Teagasc Walsh Fellowship Programme (PLoS, 30/07/2008)
      Background Obtaining chloroplast genome sequences is important to increase the knowledge about the fundamental biology of plastids, to understand evolutionary and ecological processes in the evolution of plants, to develop biotechnological applications (e.g. plastid engineering) and to improve the efficiency of breeding schemes. Extraction of pure chloroplast DNA is required for efficient sequencing of chloroplast genomes. Unfortunately, most protocols for extracting chloroplast DNA were developed for eudicots and do not produce sufficiently pure yields for a shotgun sequencing approach of whole plastid genomes from the monocot grasses. Methodology/Principal Findings We have developed a simple and inexpensive method to obtain chloroplast DNA from grass species by modifying and extending protocols optimized for the use in eudicots. Many protocols for extracting chloroplast DNA require an ultracentrifugation step to efficiently separate chloroplast DNA from nuclear DNA. The developed method uses two more centrifugation steps than previously reported protocols and does not require an ultracentrifuge. Conclusions/Significance The described method delivered chloroplast DNA of very high quality from two grass species belonging to highly different taxonomic subfamilies within the grass family (Lolium perenne, Pooideae; Miscanthus×giganteus, Panicoideae). The DNA from Lolium perenne was used for whole chloroplast genome sequencing and detection of SNPs. The sequence is publicly available on EMBL/GenBank.
    • Variation in sequences containing microsatellite motifs in the perennial biomass and forage grass, Phalaris arundinacea (Poaceae)

      Barth, Susanne; Jankowska, Marta J; Hodkinson, Trevor R; Vellani, Tia; Klaas, Manfred; European Union; KBBE-2011-5-289461). (Biomed Central, 22/03/2016)
      Forty three microsatellite markers were developed for further genetic characterisation of a forage and biomass grass crop, for which genomic resources are currently scarce. The microsatellite markers were developed from a normalized EST-SSR library. All of the 43 markers gave a clear banding pattern on 3 % Metaphor agarose gels. Eight selected SSR markers were tested in detail for polymorphism across eleven DNA samples of large geographic distribution across Europe. The new set of 43 SSR markers will help future research to characterise the genetic structure and diversity of Phalaris arundinacea, with a potential to further understand its invasive character in North American wetlands, as well as aid in breeding work for desired biomass and forage traits. P. arundinacea is particularly valued in the northern latitude as a crop with high biomass potential, even more so on marginal lands.