• Beef production from feedstuffs conserved using new technologies to reduce negative environmental impacts

      O'Kiely, Padraig; Crosson, Paul; Hamilton, William J.; Little, Enda; Stacey, Pamela; Walsh, Karl; Black, Alistair D; Crowley, James C.; Drennan, Michael J; Forristal, Dermot; et al. (Teagasc, 2007-12-01)
      Most (ca. 86%) Irish farms make some silage. Besides directly providing feed for livestock, the provision of grass silage within integrated grassland systems makes an important positive contribution to effective grazing management and improved forage utilisation by grazing animals, and to effective feed budgeting by farmers. It can also contribute to maintaining the content of desirable species in pastures, and to livestock not succumbing to parasites at sensitive times of the year. Furthermore, the optimal recycling of nutrients collected from housed livestock can often be best achieved by spreading the manures on the land used for producing the conserved feed. On most Irish farms, grass silage will remain the main conserved forage for feeding to livestock during winter for the foreseeable future. However, on some farms high yields of whole-crop (i.e. grain + straw) cereals such as wheat, barley and triticale, and of forage maize, will be an alternative option provided that losses during harvesting, storage and feedout are minimised and that input costs are restrained. These alternative forages have the potential to reliably support high levels of animal performance while avoiding the production of effluent. Their production and use however will need to advantageously integrate into ruminant production systems. A range of technologies can be employed for crop production and conservation, and for beef production, and the optimal options need to be identified. Beef cattle being finished indoors are offered concentrate feedstuffs at rates that range from modest inputs through to ad libitum access. Such concentrates frequently contain high levels of cereals such as barley or wheat. These cereals are generally between 14% to 18% moisture content and tend to be rolled shortly before being included in coarse rations or are more finely processed prior to pelleting. Farmers thinking of using ‘high-moisture grain’ techniques for preserving and processing cereal grains destined for feeding to beef cattle need to know how the yield, conservation efficiency and feeding value of such grains compares with grains conserved using more conventional techniques. European Union policy strongly encourages a sustainable and multifunctional agriculture. Therefore, in addition to providing European consumers with quality food produced within approved systems, agriculture must also contribute positively to the conservation of natural resources and the upkeep of the rural landscape. Plastics are widely used in agriculture and their post-use fate on farms must not harm the environment - they must be managed to support the enduring sustainability of farming systems. There is an absence of information on the efficacy of some new options for covering and sealing silage with plastic sheeting and tyres, and an absence of an inventory of the use, re-use and post-use fate of plastic film on farms. Irish cattle farmers operate a large number of beef production systems, half of which use dairy bred calves. In the current, continuously changing production and market conditions, new beef systems must be considered. A computer package is required that will allow the rapid, repeatable simulation and assessment of alternate beef production systems using appropriate, standardised procedures. There is thus a need to construct, evaluate and utilise computer models of components of beef production systems and to develop mathematical relationships to link system components into a network that would support their integration into an optimal system model. This will provide a framework to integrate physical and financial on-farm conditions with models for estimating feed supply and animal growth patterns. Cash flow and profit/loss results will be developed. This will help identify optimal systems, indicate the cause of failure of imperfect systems and identify areas where applied research data are currently lacking, or more basic research is required.
    • An insight into the impact of arable farming on Irish biodiversity: A scarcity of studies hinders a rigorous assessment

      O'Brien, Martin; Spillane, Charles; Meade, Connor; Mullins, Ewen; Environmental Protection Agency; 2006-B-MS-46 (Royal Irish Academy, 27/08/2008)
      To help understand and counteract future agronomic challenges to farmland biodiversity, it is essential to know how present farming practices have affected biodiversity on Irish farms. We present an overview of existing research data and conclusions, describing the impact of crop cultivation on biodiversity on Irish arable farms. An extensive literature review clearly indicates that peer-reviewed publications on research conducted in Ireland on this topic are quite scarce: just 21 papers investigating the effect of conventional crop cultivation on Irish biodiversity have been published within the past 30 years. Principally, these studies have concluded that conventional crop cultivation has had an adverse impact on biodiversity on Irish farms, with 15 of the 21 studies demonstrating negative trends for the taxa investigated. Compared to other EU states, the relative dearth of baseline data and absence of monitoring programmes designed to assess the specific impacts of crop cultivation on Irish biodiversity highlight the need to develop long-term research studies. With many new challenges facing Irish agriculture, a research programme must be initiated to measure current levels of biodiversity on arable land and to assess the main farming ‘pressures’ causing significant biodiversity loss or gains in these systems.
    • Technologies for restricting mould growth on baled silage

      O'Kiely, Padraig; Forristal, Dermot; O'Brien, Martin; McEniry, Joseph; Laffin, Christopher; Fuller, Hubert T.; Egan, Damian; Doohan, Fiona; Doyle, Evelyn M.; Clipson, Nicholas J.W.; et al. (Teagasc, 01/12/2007)
      Silage is made on approximately 86% of Irish farms, and 85% of these make some baled silage. Baled silage is particularly important as the primary silage making, storage and feeding system on many beef and smaller sized farms, but is also employed as a secondary system (often associated with facilitating grazing management during mid-summer) on many dairy and larger sized farms (O’Kiely et al., 2002). Previous surveys on farms indicated that the extent of visible fungal growth on baled silage was sometimes quite large, and could be a cause for concern. Whereas some improvements could come from applying existing knowledge and technologies, the circumstances surrounding the making and storage of baled silage suggested that environmental conditions within the bale differed from those in conventional silos, and that further knowledge was required in order to arrive at a secure set of recommendations for baled silage systems. This report deals with the final in a series (O’Kiely et al., 1999; O’Kiely et al., 2002) of three consecutive research projects investigating numerous aspect of the science and technology of baled silage. The success of each depended on extensive, integrated collaboration between the Teagasc research centres at Grange and Oak Park, and with University College Dublin. As the series progressed the multidisciplinary team needed to underpin the programme expanded, and this greatly improved the amount and detail of the research undertaken. The major objective of the project recorded in this report was to develop technologies to improve the “hygienic value” of baled silage.