• Characterization of functional properties of proteins from Ganxet beans (Phaseolus vulgaris L. var. Ganxet) isolated using an ultrasound-assisted methodology

      Lafarga, Tomas; Álvarez García, Carlos; Bobo, Gloria; Aguilo-Aguayo, Ingrid; Generalitat de Catalunya; Juan de la Cierva contract award; Postdoctoral Senior Grant Ramon y Cajal; FJCI-2016-29541; RYC-2016-19949 (Elsevier, 2018-08-17)
      This study investigated different methods of extraction of protein from Ganxet beans (Phaseolus vulgaris L. var. Ganxet) and evaluated the functional properties of these valuable proteins. Overall, ultrasound processing (40 kHz, 250 W) resulted in higher yields and increased percentages of material solubilized and proteins recovered. The highest percentage of recovered protein was obtained after extraction using 0.4 M NaOH followed by ultrasound processing for 60 min and was calculated as 78.73 ± 4.88% (p < 0.05). Extraction using 0.4 M NaOH followed by sonication for 60 min resulted in the highest yield and percentage of solubilized material calculated as 37.98 ± 0.02 and 54.58 ± 0.19%, respectively (p < 0.05). The water- and oil-holding capacities of the Ganxet protein concentrate were calculated as 2.33 ± 0.12 and 2.69 ± 0.32 g of water or oil per g of protein concentrate, respectively. The highest emulsifying capacity was observed at pH 8.0 and was calculated as 69.4 ± 0.8%.
    • Observations on the water distribution and extractable sugar content in carrot slices after pulsed electric field treatment

      Aguilo-Aguayo, Ingrid; Downey, Gerard; Keenan, Derek F.; Lyng, James G.; Brunton, Nigel; Rai, Dilip K.; Department of Agriculture, Food and the Marine; Generalitat of Catalonia; Lifelong Learning Programme; FIRM 06/TNI/AFRC6; et al. (Elsevier, 13/06/2014)
      The impact of pulsed electric field (PEF) processing conditions on the distribution of water in carrot tissue and extractability of soluble sugars from carrot slices was studied. Time domain NMR relaxometry was used to investigate the water proton mobility in PEF-treated carrot samples. Three distinct transverse relaxation peaks were observed in untreated carrots. After PEF treatment only two slightly-overlapping peaks were found; these were attributed to water present in the cytoplasm and vacuole of carrot xylem and phloem tissues. This post-treatment observation indicated an increase in water permeability of tissues and/or a loss of integrity in the tonoplast. In general, the stronger the electric field applied, the lower the area representing transverse relaxation (T2) values irrespective of treatment duration. Moreover an increase in sucrose, β- and α-glucose and fructose concentrations of carrot slice extracts after PEF treatment suggested increases in both cell wall and vacuole permeability as a result of exposure to pulsed electric fields.