• Biotechnological applications of functional metagenomics in the food and pharmaceutical industries

      Coughlan, Laura M.; Cotter, Paul D.; Hill, Colin; Alvarez-Ordonez, Avelino; Science Foundation Ireland; 13/SIRG/2157 (Frontiers Media S. A., 30/06/2015)
      Microorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present, and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i) the identification of enzymes with desirable technological properties, capable of catalyzing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii) the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii) the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries.
    • Comparison of methods for the identification and sub-typing of O157 and non-O157 Escherichia coli serotypes and their integration into a polyphasic taxonomy approach

      Prieto-Calvo, M.A.; Omer, M.K.; Alveseike, O.; Lopez, M.; Alvarez-Ordonez, Avelino; Prieto, Maria Luz; Research Council of Norway; INIA, Spain; Foundation for Levy on Foods; Norwegian Research Fees Fund for Agricultural Goods; et al. (Teagasc (Agriculture and Food Development Authority), Ireland, 30/12/2016)
      Phenotypic, chemotaxonomic and genotypic data from 12 strains of Escherichia coli were collected, including carbon source utilisation profiles, ribotypes, sequencing data of the 16S–23S rRNA internal transcribed region (ITS) and Fourier transform-infrared (FT-IR) spectroscopic profiles. The objectives were to compare several identification systems for E. coli and to develop and test a polyphasic taxonomic approach using the four methodologies combined for the sub-typing of O157 and non-O157 E. coli. The nucleotide sequences of the 16S–23S rRNA ITS regions were amplified by polymerase chain reaction (PCR), sequenced and compared with reference data available at the GenBank database using the Basic Local Alignment Search Tool (BLAST) . Additional information comprising the utilisation of carbon sources, riboprint profiles and FT-IR spectra was also collected. The capacity of the methods for the identification and typing of E. coli to species and subspecies levels was evaluated. Data were transformed and integrated to present polyphasic hierarchical clusters and relationships. The study reports the use of an integrated scheme comprising phenotypic, chemotaxonomic and genotypic information (carbon source profile, sequencing of the 16S–23S rRNA ITS, ribotyping and FT-IR spectroscopy) for a more precise characterisation and identification of E. coli. The results showed that identification of E. coli strains by each individual method was limited mainly by the extension and quality of reference databases. On the contrary, the polyphasic approach, whereby heterogeneous taxonomic data were combined and weighted, improved the identification results, gave more consistency to the final clustering and provided additional information on the taxonomic structure and phenotypic behaviour of strains, as shown by the close clustering of strains with similar stress resistance patterns.
    • New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry

      Coughlan, Laura M.; Cotter, Paul D.; Hill, Colin; Alvarez-Ordonez, Avelino; Science Foundation Ireland; 13/SIRG/2157 (Frontiers, 18/10/2016)
      Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated with bacterial biofilms in the food industry and summarizes the recent strategies explored to inhibit biofilm formation, with special focus on those targeting quorum sensing.
    • A note on challenge trials to determine the growth of Listeria monocytogenes on mushrooms (Agaricus bisporus)

      Leong, Dara; Alvarez-Ordonez, Avelino; Jordan, Kieran; Safefood (Teagasc (Agriculture and Food Development Authority), Ireland, 30/12/2015)
      In the EU, food is considered safe with regard to Listeria monocytogenes if the number of micro-organisms does not exceed 100 colony forming units (cfu)/g throughout its shelf-life. Therefore, it is important to determine if a food supports growth of L. monocytogenes. Guidelines for conducting challenge tests for growth assessment of L. monocytogenes on foods were published by the European Union Reference Laboratory (EURL) in 2014. The aim of this study was to use these guidelines to determine if refrigerated, fresh, whole, closed-cap, prepackaged mushrooms (Agaricus bisporus) support the growth of L. monocytogenes. Three batches of mushrooms were artificially inoculated at approximately 100 cfu/g with a three-strain mix of L. monocytogenes and incubated for 2 days at 8°C followed by 4 days at 12°C. L. monocytogenes numbers were determined (in triplicate for each batch) on days 0, 2 and 6. Water activity, pH and total bacterial counts were also determined. There was no increase in the number of L. monocytogenes above the threshold of 0.5 log cfu/g in any of the replicates. In 8 of 9 replicates, the numbers decreased indicating that A. bisporus do not support the growth of L. monocytogenes. As the EU regulations allow < 100 cfu/g if the food cannot support growth of L. monocytogenes, the significance of this study is that mushrooms with < 100 cfu/g may be within the regulations and therefore, quantitative rather than qualitative determination may be required.