• In vitro digestion of protein-enriched restructured beef steaks with pea protein isolate, rice protein and lentil flour following sous vide processing

      Baugreet, Sephora; Gomez, Carolina; Auty, Mark; Kerry, Joseph P.; Hamill, Ruth; Brodkorb, Andre; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine; 11/F/045 (Elsevier, 2019-04-12)
      The effect of plant protein inclusion in cooked meat upon in vitro gastro-intestinal (GI) digestion was investigated. Pea protein isolate, rice protein and lentil flour were used to increase the protein content in a meat model system restructured using two transglutaminase enzymes [Activa®EB (TG) and Transgluseen™-M (TS)]. Restructured beef steaks were subjected to simulated GI digestion using the static INFOGEST method. Samples taken at different digestion times were analysed using SDS-PAGE, size exclusion-HPLC, free amino acid analysis and microscopy. SDS-PAGE analysis revealed significant protein hydrolysis during GI digestion. Most soluble peptides had a molecular weight smaller than 500 Da, corresponding to peptides of <5 amino acids, regardless of food treatment. The amounts of released, free amino acids isoleucine, lysine, phenylalanine and valine were higher (P < 0.05) in lentil-enriched restructured beef steaks following GI digestion. Confocal laser scanning microscopy (CSLM) revealed pronounced aggregation in digested samples. In vitro digestates of protein-enriched restructured beef steaks showed lower production of small molecular weight peptides. This study demonstrated how the bioaccessibility of protein-enriched restructured beef steaks are influenced by formulation and processing.
    • Optimisation of plant protein and transglutaminase content in novel beef restructured steaks for older adults by central composite design

      Baugreet, Sephora; Kerry, Joseph P.; Brodkorb, Andre; Gomez, Carolina; Auty, Mark; Allen, Paul; Hamill, Ruth; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; 11/F/045 (Elsevier, 2018-03-29)
      With the goal of optimising a protein-enriched restructured beef steak targeted at the nutritional and chemosensory requirements of older adults, technological performance of thirty formulations, containing plant-based ingredients, pea protein isolate (PPI), rice protein (RP) and lentil flour (LF) with transglutaminase (TG) to enhance binding of meat pieces, were analysed. Maximal protein content of 28% in cooked product was achieved with PPI, RP and LF. Binding strength was primarily affected by TG, while textural parameters were improved with LF inclusion. Optimal formulation (F) to obtain a protein-enriched steak with lowest hardness values was achieved with TG (2%), PPI (8%), RP (9.35%) and LF (4%). F, F1S (optimal formulation 1 with added seasoning) and control restructured products (not containing plant proteins or seasonings) were scored by 120 consumers' aged over-65 years. Controls were most preferred (P < .05), while F1S were least liked by the older consumers. Consumer testing suggests further refinement and optimisation of restructured products with plant proteins should be undertaken.
    • Optimisation of plant protein and transglutaminase content in novel beef restructured steaks for older adults by central composite design

      Baugreet, Sephora; Kerry, Joesph; Brodkorb, Andre; Gomez, Carolina; Auty, Mark; Allen, Paul; Hamill, Ruth; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine; 11/F/045 (Elsevier, 2018-03-29)
      With the goal of optimising a protein-enriched restructured beef steak targeted at the nutritional and chemosensory requirements of older adults, technological performance of thirty formulations, containing plant-based ingredients, pea protein isolate (PPI), rice protein (RP) and lentil flour (LF) with transglutaminase (TG) to enhance binding of meat pieces, were analysed. Maximal protein content of 28% in cooked product was achieved with PPI, RP and LF. Binding strength was primarily affected by TG, while textural parameters were improved with LF inclusion. Optimal formulation (F) to obtain a protein-enriched steak with lowest hardness values was achieved with TG (2%), PPI (8%), RP (9.35%) and LF (4%). F, F1S (optimal formulation 1 with added seasoning) and control restructured products (not containing plant proteins or seasonings) were scored by 120 consumers' aged over-65 years. Controls were most preferred (P < .05), while F1S were least liked by the older consumers. Consumer testing suggests further refinement and optimisation of restructured products with plant proteins should be undertaken.
    • Physicochemical Characteristics of Protein-Enriched Restructured Beef Steaks with Phosphates, Transglutaminase, and Elasticised Package Forming

      Baugreet, Sephora; Kerry, Joseph P.; Allen, Paul; Gallagher, Eimear; Hamill, Ruth; Irish Department of Agriculture, Food and the Marine; Teagasc Walsh Fellowship Programme; 11/F/045 (Hindawi Limited, 2018)
      Restructured beef steaks were formulated by adding protein-rich ingredients (pea protein isolate (PPI), rice protein (RP), and lentil flour (LF) (at 4 and 8%)), phosphate (0.2%), and two binding agents: 1% (TG) and 0.15% (TS). The effects of their addition on the physicochemical properties of the beef steaks were investigated. Protein content of the RP8TG sample was significantly higher than that of the control in both the raw and cooked state. Raw LF4TS exhibited greater () a values than the control; however, after the cooking process, L, a, and b values were similar for all treatments. Textural assessment showed that elevating protein level increased () hardness, chewiness, cohesiveness, and gumminess in cooked restructured steaks. LF addition reduced all textural values assessed, indicating a strong plant protein effect on texture modification. The commercial binder produced a better bind in combination with protein ingredients. This facilitated the production of uniformed restructured beef steaks from low-value beef muscles with acceptable quality parameters using a novel process technology.