• Development of Organic Breads and Confectionery

      Gallagher, Eimear; Keehan, Denise; Butler, Francis; Downey, Gerard (Teagasc, 01/07/2005)
      In recent years, concern for the environment and consumer dissatisfaction with conventional food has led to growing interest in organic farming and food. The demand has also been fuelled by highly-publicised food scares. Food safety and genetic modification issues have led some consumers to opt for organic food as a safer alternative. Recently, there has been a significant increase in the number of launches of organic bakery products in Ireland. As a result, there is an increased need to identify suitable organic bakery ingredients for use in bread and confectionery formulations. However, only a limited number of scientific studies on the physical, chemical and functional properties of organic flours and ingredients exist. The effects of commonly-used ingredients in baking, i.e. organic improvers and fats, on the baking characteristics of organic products have not yet been reported and little is known about the influence of approved additives that may be beneficial to organic baking. Arising from these gaps in the knowledge base on the use of organic flours and ingredients, the objective of this study was to evaluate the chemical, rheological and baking characteristics of white, wholemeal and confectionery organic flours and to assess the baking potential of organic bakery ingredients, in particular improvers, fats and additives. Ingredients and baked goods were compared to non-organic controls.
    • Development of organic breads and confectionery

      Gallagher, Eimear; Keehan, Denise; Butler, Francis (Teagasc, 2005-07)
      Recently, there has been a significant increase in the number of launches of organic bakery products in Ireland. As a result, there is an increased need to identify suitable organic bakery ingredients for use in bread and confectionery formulations. However, only a limited number of scientific studies on the physical, chemical and functional properties of organic flours and ingredients exist. The effects of commonly-used ingredients in baking, i.e. organic improvers and fats, on the baking characteristics of organic products have not yet been reported and little is known about the influence of approved additives that may be beneficial to organic baking. Arising from these gaps in the knowledge base on the use of organic flours and ingredients, the objective of this study was to evaluate the chemical, rheological and baking characteristics of white, wholemeal and confectionery organic flours and to assess the baking potential of organic bakery ingredients, in particular improvers, fats and additives. Ingredients and baked goods were compared to non-organic controls.
    • Effect of pulse flours on the physiochemical characteristics and sensory acceptance of baked crackers

      Millar, Kim A.; Barry-Ryan, Catherine; Burke, Roisin; Hussey, Karen; McCarthy, Sinead N.; Gallagher, Eimear; Teagasc Walsh Fellowship Programme (Wiley, 29/03/2017)
      Pulse flours offer nutritional alternatives to wheat flour in the production of baked snacks due to their high protein and fibre levels and low glycaemic index. In this study, broad-bean (Vicia faba), yellow-pea and green-pea (Pisum sativum) flours were each blended with wheat flour at 40% in the formulation of chemically leavened crackers. The effects of flour type and baking time on the physiochemical properties, sensory acceptability, nutritional composition and antioxidant activity of the crackers were observed in comparison with 100% wheat crackers. Broad-bean crackers had the highest protein content and antioxidant activity (13 g per 100 g DM and 38.8 mgAAE per 100 g DM, respectively). Yellow-pea crackers had the highest fibre content (12 g per 100 g DM). Physical dimensions and colour attributes were significantly affected by pulse-flour substitution. Yellow-pea and broad-bean crackers were significantly preferred by consumers compared to the control, demonstrating the potential application of these flours to improve the eating quality and nutritional profile of crackers.
    • The effect of temperature during retail display on the colour stability of CO pretreated vacuum packaged beef steaks

      Van Rooyen, Lauren Anne; Allen, Paul; Gallagher, Eimear; O'Connor, David I.; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine; 11/F/060 (Elsevier, 2018-05-24)
      The effect of CO pretreatments applied to beef striploin steaks (Longissimus thoracis et lumborum, LTL) prior to vacuum packaging and display temperature on colour stability, shelf life and tenderness was determined. Steaks were exposed to 5% CO, 60% CO2 and 35% N2 for 3 (CO3), 5 (CO5) or 7 (CO7) h, followed by 28 days display at 2 °C (good industry practice) or 6 °C (mild abuse). CO5 was the optimum exposure time as it induced the desirable colour while not retaining the bright colour, irrespective of display temperature. K/S ratios confirmed that CO pretreatment did not mask spoilage and could be more sensitive than colour parameters at monitoring discoloration as colour was not retained. Exposure to CO did not have any negative effect on meat quality attributes, while mild temperature abuse (6 °C) increased purge loss and decreased pH.
    • Fate of beta-glucan, polyphenols and lipophilic compounds in baked crackers fortified with different barley-milled fractions

      Gangopadhyay, Nirupama; O'Shea, Norah; Brunton, Nigel P.; Gallagher, Eimear; Harrison, Sabine M.; Rai, Dilip K.; Department of Agriculture, Food and the Marine; FIRM 11/SF/317 (Elsevier BV, 2019-07-18)
      Four types of crackers were prepared, whereby wheat flour was substituted with different percentages of barley flour and bran. These formulations were compared to a 100% wheat flour (control) cracker with respect to β-glucan, polyphenols and lipophilic bioactives. Incorporation of barley fractions enriched the β-glucan, and phenolic content, as well as in vitro antioxidant capacities of the crackers. However, some polyphenols including procyanidin C and ferulic acid could not be detected in the crackers owing to the probable degradation of these compounds during baking. The β-glucan, flavanols (catechin and procyanidin B), as well as fatty acids and sterols were least affected; while the α-tocotrienols showed degradation following the baking process. Overall, barley fractions can serve as valued ingredients for enhancing the health-salutary components of fortified crackers or the products thereof.
    • Functional ingredients as fat replacers in cakes and pastries

      Dwyer, Elizabeth; Gallagher, Eimear (Teagasc, 2001-05)
      For specific health concerns, consumers want fat taken out of food without the flavour and texture being adversely affected. Novel ingredients were investigated for use in the formulation of reduced fat bakery products. Formulations were developed for reduced fat muffins, madeira cake and shortcrust pastry by replacing some of the fat in the recipes with combinations of novel ingredients. The aim was to achieve at least a 25% fat reduction in the products while maintaining quality, texture, taste and consumer acceptability. Focus groups were used to ascertain consumers’ preferences for the reduced fat bakery products to determine which, if any, recipes had greatest potential for further development.
    • The impact of sugar particle size manipulation on the physical and sensory properties

      Richardson, Aislinn M.; Tyuftin, Andrey A.; Kilcawley, Kieran; Gallagher, Eimear; O'Sullivan, Maurice G.; Kerry, Joseph P.; Department of Agriculture, Food and the Marine; 14F 812 (Elsevier, 2018-04-16)
      The overall objective of this research was to assess the effect of sugar particle size manipulation on the physical and sensory properties of chocolate brownies. A control sugar (commercially available, 200-5181 μm) and four of its sieved sugar separates (mesh size of 710, 500, 355 and 212 μm) were determined by grinding and sieving. The particle diameter and diameter distributions of the control sugar and each sugar fraction were measured. As a result, five sugar treatments were determined for chocolate brownie formulations; Control (C200-5181 μm), Large-particle replacement (LPR924-1877 μm), Medium-particle replacement (MPR627-1214 μm), Small-particle replacement (SPR459-972 μm) and a known MIX sample. Samples were tested using sensory (hedonic & intensity), instrumental (texture and colour) and compositional analyses (moisture and fat). Brownie samples containing the smallest sugar fraction (SPR459-972 μm) were perceived as significantly sweeter than any other sample (p < 0.05). Brownies containing this fraction were also the softest and moistest samples (p < 0.05). Texture liking was significantly associated with the LPR924-1877 μm brownie (p < 0.05). Darkness of brownie samples increased (p < 0.05) as sugar particle size decreased. Therefore, sugar particle size alteration affects the physical and sensory properties of chocolate brownies and could be used as a viable approach to reduce sugar in confectionery-type products.
    • Improving the quality of gluten-free products

      Gallagher, Eimear; McCarthy, Denise; Gormley, Ronan T.; Arendt, Elke (Teagasc, 2004-03)
      The incidence of coeliac disease or other allergic reactions/intolerances to gluten is increasing, largely due to improved diagnostic procedures and changes in eating habits. The worldwide number of sufferers of coeliac disease has been predicted to increase by a factor of ten over the next number of years, resulting in a growing market for gluten-free cereal-based products. Market research has shown that many of the products currently on sale are of inferior quality. The replacement of gluten presents a major technological challenge, as it is an essential structure-building protein which is necessary for formulating high quality cereal-based goods. Therefore, the production of high quality gluten-free bread is difficult.
    • Physical, textural and sensory characteristics of reduced sucrose cakes, incorporated with clean-label sugar-replacing alternative ingredients

      Milner, Laura; Kerry, Joseph P.; O'Sullivan, Maurice G.; Gallagher, Eimear; Department of Agriculture, Food and the Marine (Elsevier BV, 2020-01)
      High levels of sucrose in foods present a great risk of obesity and type 2 diabetes. Therefore a low sucrose intake is strongly recommended. Sweet baked products incorporate high levels of sucrose. Sucrose in the original cake formulation was reduced and replaced with apple pomace, whey permeate, oligofructose, polydextrose. An acceptable sucrose reduction of between 21 and 27% was achieved. Cakes containing apple pomace had the lowest specific volume (1.8 cm3/g) and highest crumb firmness (8.60 N) (P < .05). Apple pomace and whey permeate had a significantly decreased L* values of the crust (P < .05). Moisture content of the cake crumb was increased significantly with the addition of oligofructose, whey permeate and polydextrose. All treatments resulted in a significant increase of the water activity of the cake crumb compared to the control (P < .05). Crumb cell structure was maintained as shown by 2-D and confocal imaging. Sensory trials revealed the reformulated cakes were acceptable to panellists.
    • Potential applications for virtual and augmented reality technologies in sensory science

      Crofton, Emily C.; Botinestean, Cristina; Fenelon, Mark; Gallagher, Eimear (Elsevier, 2019-06-19)
      Sensory science has advanced significantly in the past decade and is quickly evolving to become a key tool for predicting food product success in the marketplace. Increasingly, sensory data techniques are moving towards more dynamic aspects of sensory perception, taking account of the various stages of user-product interactions. Recent technological advancements in virtual reality and augmented reality have unlocked the potential for new immersive and interactive systems which could be applied as powerful tools for capturing and deciphering the complexities of human sensory perception. This paper reviews recent advancements in virtual and augmented reality technologies and identifies and explores their potential application within the field of sensory science. The paper also considers the possible benefits for the food industry as well as key challenges posed for widespread adoption. The findings indicate that these technologies have the potential to alter the research landscape in sensory science by facilitating promising innovations in five principal areas: consumption context, biometrics, food structure and texture, sensory marketing and augmenting sensory perception. Although the advent of augmented and virtual reality in sensory science offers new exciting developments, the exploitation of these technologies is in its infancy and future research will understand how they can be fully integrated with food and human responses. Industrial relevance: The need for sensory evaluation within the food industry is becoming increasingly complex as companies continuously compete for consumer product acceptance in today's highly innovative and global food environment. Recent technological developments in virtual and augmented reality offer the food industry new opportunities for generating more reliable insights into consumer sensory perceptions of food and beverages, contributing to the design and development of new products with optimised consumer benefits. These technologies also hold significant potential for improving the predictive validity of newly launched products within the marketplace.