• The Application of Pureed Butter Beans and a Combination of Inulin and Rebaudioside A for the Replacement of Fat and Sucrose in Sponge Cake: Sensory and Physicochemical Analysis

      Richardson, Aislinn M.; Tyuftin, Andrey A.; Kilcawley, Kieran N.; Gallagher, Eimear; O’Sullivan, Maurice G.; Kerry, Joseph P.; Department of Agriculture, Food and the Marine; 14F 812 (Multidisciplinary Digital Publishing Institute, 2021-01-26)
      Determining minimum levels of fat and sucrose needed for the sensory acceptance of sponge cake while increasing the nutritional quality was the main objective of this study. Sponge cakes with 0, 25, 50 and 75% sucrose replacement (SR) using a combination of inulin and Rebaudioside A (Reb A) were prepared. Sensory acceptance testing (SAT) was carried out on samples. Following experimental results, four more samples were prepared where fat was replaced sequentially (0, 25, 50 and 75%) in sucrose-replaced sponge cakes using pureed butter beans (Pbb) as a replacer. Fat-replaced samples were investigated using sensory (hedonic and intensity) and physicochemical analysis. Texture liking and overall acceptability (OA) were the only hedonic sensory parameters significantly affected after a 50% SR in sponge cake (p < 0.05). A 25% SR had no significant impact on any hedonic sensory properties and samples were just as accepted as the control sucrose sample. A 30% SR was chosen for further experiments. After a 50% fat replacement (FR), no significant differences were found between 30% sucrose-replaced sponge cake samples in relation to all sensory (hedonic and intensity) parameters investigated. Flavour and aroma intensity attributes such as buttery and sweet and, subsequently, liking and OA of samples were negatively affected after a 75% FR (p < 0.05). Instrumental texture properties (hardness and chewiness (N)) did not discriminate between samples with increasing levels of FR using Pbb. Moisture content increased significantly with FR (p < 0.05). A simultaneous reduction in fat (42%) and sucrose was achieved (28%) in sponge cake samples without negatively affecting OA. Optimised samples contained significantly more dietary fibre (p < 0.05).
    • The impact of sugar particle size manipulation on the physical and sensory properties

      Richardson, Aislinn M.; Tyuftin, Andrey A.; Kilcawley, Kieran; Gallagher, Eimear; O'Sullivan, Maurice G.; Kerry, Joseph P.; Department of Agriculture, Food and the Marine; 14F 812 (Elsevier, 2018-04-16)
      The overall objective of this research was to assess the effect of sugar particle size manipulation on the physical and sensory properties of chocolate brownies. A control sugar (commercially available, 200-5181 μm) and four of its sieved sugar separates (mesh size of 710, 500, 355 and 212 μm) were determined by grinding and sieving. The particle diameter and diameter distributions of the control sugar and each sugar fraction were measured. As a result, five sugar treatments were determined for chocolate brownie formulations; Control (C200-5181 μm), Large-particle replacement (LPR924-1877 μm), Medium-particle replacement (MPR627-1214 μm), Small-particle replacement (SPR459-972 μm) and a known MIX sample. Samples were tested using sensory (hedonic & intensity), instrumental (texture and colour) and compositional analyses (moisture and fat). Brownie samples containing the smallest sugar fraction (SPR459-972 μm) were perceived as significantly sweeter than any other sample (p < 0.05). Brownies containing this fraction were also the softest and moistest samples (p < 0.05). Texture liking was significantly associated with the LPR924-1877 μm brownie (p < 0.05). Darkness of brownie samples increased (p < 0.05) as sugar particle size decreased. Therefore, sugar particle size alteration affects the physical and sensory properties of chocolate brownies and could be used as a viable approach to reduce sugar in confectionery-type products.