• Enzymatic degradation of FODMAPS via application of β-fructofuranosidases and α-galactosidases- A fundamental study

      Atzler, Jonas J.; Ispiryan, Lilit; Gallagher, Eimear; Sahin, Aylin W.; Zannini, Emanuele; Arendt, Elke K.; Irish Department of Agriculture, Food and the Marine; 15F602 (Elsevier BV, 2020-09)
      Cereals and pulses often contribute to the intake of Fermentable Oligo-, Di-, Monosaccharides, and Polyols (FODMAPs) due to high amounts of fructans or galactooligosaccharides (GOS). FODMAPs can trigger symptoms of Irritable Bowel Syndrome (IBS) and therefore, the development of foods and beverages with a lower FODMAP-content are favourable for IBS patients. Enzyme technology is a promising tool to reduce the FODMAP-content in foods and to maintain product quality. This fundamental study investigates the efficiency of invertase, inulinase, and α-galactosidase as potential food additives to reduce the total FODMAP content of food ingredients. Extracts of high FODMAP ingredients, such as wheat and lentil, and standard solutions of various fructans and GOS were incubated with invertase, inulinase and α-galactosidase for 1 h and 2 h. Contents of oligosaccharides before and after treatment and related IBS-triggering reaction products were quantified using ion chromatography. Inulinase showed a high degradation yield (over 90% of degradation) for both GOS and fructans. For invertase only low degradation yields were measured. α-Galactosidase showed the highest efficiency in decomposing GOS (100% of degradation) and led to non-IBS triggering degradation products. This indicates a high potential for a combined inulinase/α-galactosidase treatment for products containing both fructans and GOS.
    • Physicochemical Characteristics of Protein-Enriched Restructured Beef Steaks with Phosphates, Transglutaminase, and Elasticised Package Forming

      Baugreet, Sephora; Kerry, Joseph P.; Allen, Paul; Gallagher, Eimear; Hamill, Ruth; Irish Department of Agriculture, Food and the Marine; Teagasc Walsh Fellowship Programme; 11/F/045 (Hindawi Limited, 2018)
      Restructured beef steaks were formulated by adding protein-rich ingredients (pea protein isolate (PPI), rice protein (RP), and lentil flour (LF) (at 4 and 8%)), phosphate (0.2%), and two binding agents: 1% (TG) and 0.15% (TS). The effects of their addition on the physicochemical properties of the beef steaks were investigated. Protein content of the RP8TG sample was significantly higher than that of the control in both the raw and cooked state. Raw LF4TS exhibited greater () a values than the control; however, after the cooking process, L, a, and b values were similar for all treatments. Textural assessment showed that elevating protein level increased () hardness, chewiness, cohesiveness, and gumminess in cooked restructured steaks. LF addition reduced all textural values assessed, indicating a strong plant protein effect on texture modification. The commercial binder produced a better bind in combination with protein ingredients. This facilitated the production of uniformed restructured beef steaks from low-value beef muscles with acceptable quality parameters using a novel process technology.