• Observations on the water distribution and extractable sugar content in carrot slices after pulsed electric field treatment

      Aguilo-Aguayo, Ingrid; Downey, Gerard; Keenan, Derek F.; Lyng, James G.; Brunton, Nigel; Rai, Dilip K.; Department of Agriculture, Food and the Marine; Generalitat of Catalonia; Lifelong Learning Programme; FIRM 06/TNI/AFRC6; et al. (Elsevier, 13/06/2014)
      The impact of pulsed electric field (PEF) processing conditions on the distribution of water in carrot tissue and extractability of soluble sugars from carrot slices was studied. Time domain NMR relaxometry was used to investigate the water proton mobility in PEF-treated carrot samples. Three distinct transverse relaxation peaks were observed in untreated carrots. After PEF treatment only two slightly-overlapping peaks were found; these were attributed to water present in the cytoplasm and vacuole of carrot xylem and phloem tissues. This post-treatment observation indicated an increase in water permeability of tissues and/or a loss of integrity in the tonoplast. In general, the stronger the electric field applied, the lower the area representing transverse relaxation (T2) values irrespective of treatment duration. Moreover an increase in sucrose, β- and α-glucose and fructose concentrations of carrot slice extracts after PEF treatment suggested increases in both cell wall and vacuole permeability as a result of exposure to pulsed electric fields.
    • Opportunities and perspectives for utilisation of co-products in the meat industry

      Lynch, Sarah A.; Mullen, Anne Maria; O'Neill, Eileen; Drummond, Liana; Álvarez García, Carlos; Department of Agriculture, Food and the Marine; 11/F/043 (Elsevier, 2018-06-19)
      Meat co-products are the non-meat components arising from meat processing/fabrication and are generated in large quantities on a daily basis. Co-products are considered as low added-value products, and in general it is difficult for industries to divert efforts into increasing their value. While many of these products can be edible those not used for human consumption or pet food is usually processed to be used as animal feed, fertilizer or fuel. However, to a large extent meat co-products are an excellent source of high nutritive value protein, minerals and vitamins and hence may be better diverted to contribute to alleviate the increasing global demand for protein. In this review the current uses, legislation and potential techniques for meat co-products processing are reviewed with the aim of showing a route to improve meat industry sustainability, profitability and better usage of available resources.
    • Optimisation of plant protein and transglutaminase content in novel beef restructured steaks for older adults by central composite design

      Baugreet, Sephora; Kerry, Joseph P.; Brodkorb, Andre; Gomez, Carolina; Auty, Mark; Allen, Paul; Hamill, Ruth; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; 11/F/045 (Elsevier, 2018-03-29)
      With the goal of optimising a protein-enriched restructured beef steak targeted at the nutritional and chemosensory requirements of older adults, technological performance of thirty formulations, containing plant-based ingredients, pea protein isolate (PPI), rice protein (RP) and lentil flour (LF) with transglutaminase (TG) to enhance binding of meat pieces, were analysed. Maximal protein content of 28% in cooked product was achieved with PPI, RP and LF. Binding strength was primarily affected by TG, while textural parameters were improved with LF inclusion. Optimal formulation (F) to obtain a protein-enriched steak with lowest hardness values was achieved with TG (2%), PPI (8%), RP (9.35%) and LF (4%). F, F1S (optimal formulation 1 with added seasoning) and control restructured products (not containing plant proteins or seasonings) were scored by 120 consumers' aged over-65 years. Controls were most preferred (P < .05), while F1S were least liked by the older consumers. Consumer testing suggests further refinement and optimisation of restructured products with plant proteins should be undertaken.
    • Optimisation of plant protein and transglutaminase content in novel beef restructured steaks for older adults by central composite design

      Baugreet, Sephora; Kerry, Joesph; Brodkorb, Andre; Gomez, Carolina; Auty, Mark; Allen, Paul; Hamill, Ruth; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine; 11/F/045 (Elsevier, 2018-03-29)
      With the goal of optimising a protein-enriched restructured beef steak targeted at the nutritional and chemosensory requirements of older adults, technological performance of thirty formulations, containing plant-based ingredients, pea protein isolate (PPI), rice protein (RP) and lentil flour (LF) with transglutaminase (TG) to enhance binding of meat pieces, were analysed. Maximal protein content of 28% in cooked product was achieved with PPI, RP and LF. Binding strength was primarily affected by TG, while textural parameters were improved with LF inclusion. Optimal formulation (F) to obtain a protein-enriched steak with lowest hardness values was achieved with TG (2%), PPI (8%), RP (9.35%) and LF (4%). F, F1S (optimal formulation 1 with added seasoning) and control restructured products (not containing plant proteins or seasonings) were scored by 120 consumers' aged over-65 years. Controls were most preferred (P < .05), while F1S were least liked by the older consumers. Consumer testing suggests further refinement and optimisation of restructured products with plant proteins should be undertaken.
    • Optimised protein recovery from mackerel whole fish by using sequential acid/alkaline isoelectric solubilization precipitation (ISP) extraction assisted by ultrasound

      Álvarez García, Carlos; Lélu, Pauline; Lynch, Sarah A.; Tiwari, Brijesh K; National Development Plan 2007–2013; MFFRI/07/01 (Elsevier, 2017-10-04)
      The growing fishery industry needs to find new green-processes in order to provide a solution to the huge amount of wastes and by-products that such industrial activity produces. Currently, around a 40% of the total weight of the mackerel is considered a by-product, because just the fillets are used in the food market. ISP method has been revealed as a useful tool for protein recovering, however the yield of this process is traditionally lower than enzymatic methods. In present work, the use of sequential acid/alkaline extraction and alkaline extraction assisted by ultrasound, have been implemented in order to increase the yield of the process. It has been demonstrated that (i) sequential extraction is able to recover practically 100% of total protein, and (ii) applying ultrasound to alkaline extraction is possible to recover more than 95% of total protein from mackerel by-products. Extracted proteins were characterized according to their size, and the amino acid profile of final product was determined.
    • Optimising the acceptability of reduced-salt ham with flavourings using a mixture design

      Delgado-Pando, Gonzalo; Allen, Paul; Kerry, Joseph P.; O'Sullivan, Maurice; Hamill, Ruth; Department of Agriculture, Food and the Marine; 11F 026 (Elsevier, 2019-05-13)
      The objective of this study was to optimise the acceptability of reduced-salt cooked ham containing a mixture of glycine and yeast extract as flavourings by using response surface methodology. Twelve different formulations were prepared with varying levels of salt and the two flavourings, according to a mixture design. The sensory properties were assessed along with the instrumental texture and colour. A multiple factor analysis showed that higher scores in tenderness, saltiness and juiciness were positively correlated, whereas instrumental hardness and chewiness were negatively correlated with acceptability. Response surface plots and optimisation software allowed the inference of two optimised formulations: HO1 with 1.3% salt and yeast extract content of 0.33%; and HO2 with 1.27% salt, 0.2% yeast extract and 0.16% glycine. A panel of 100 consumers found no significant differences in overall acceptability when both were compared to a control (1.63% salt). These results show it is possible to manufacture consumer accepted cooked ham with up to 20% salt reduction.
    • Optimization of protein recovery from bovine lung by pH shift process using response surface methodology

      Lynch, Sarah A.; Álvarez García, Carlos; O'Neill, Eileen; Keenan, Derek F.; Mullen, Anne Maria; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; 11/F/043 (Wiley, 2017-09)
      BACKGROUND Response surface methodology (RSM) was used in a sequential manner to optimize solubilization and precipitation conditions in the recovery of protein from bovine lung using pH shift. RESULTS Separate D‐optimal designs were employed for protein solubilization and precipitation. Independent variables investigated for protein solubilization were time (10–120 min), temperature (4–20 °C), pH (8.0–11.0) and solvent/sample ratio (2.5–10). Variables for protein precipitation were time (0–60 min) and pH (4.25–6.00). Soluble protein yields ranged from 323 to 649 g kg−1 and the quadratic model for protein solubilization revealed a coefficient of determination R2 of 0.9958. Optimal conditions for maximum protein solubility were extraction time 140 min, temperature 19 °C, pH 10.8 and solvent/sample ratio 13.02. Protein precipitation yields varied from 407 to 667 g kg−1, giving a coefficient of determination R2 of 0.9335. Optimal conditions for maximum protein precipitation were pH 5.03 and 60 min. Based on the RSM model, solubilization conditions were manipulated to maximize protein solubilization under reduced water and alkaline usage. These conditions were also validated. CONCLUSION Models for solubilization and precipitation using bovine and porcine lung were validated; predicted and actual yields were in good agreement, showing cross‐species applicability of the results. © 2017 Society of Chemical Industry
    • An Overview on Cyclic Fatty Acids as Biomarkers of Quality and Authenticity in the Meat Sector

      Lolli, Veronica; Zanardi, Emanuela; Moloney, Aidan; Caligiani, Augusta (MDPI, 2020-11-27)
      A survey was conducted to determine the content of cyclopropane fatty acids (CPFAs) and ω-cyclohexyl fatty acids (CHFAs) by using gas chromatography- mass spectrometry (GC-MS) and proton nuclear magnetic resonance (1H NMR) techniques in various meat samples from different species, including commercial samples and complex and thermally processed products (i.e., Bolognese sauce). The CPFAs concentration (as the sum of two isomers, namely dihydrosterculic acid and lactobacillic acid) in bovine meat fat (ranging between 70 and 465 mg/kg fat) was positively related to a silage-based diet, and therefore, they are potential biomarkers for monitoring the feeding system of cattle. CHFAs, such as 11-cyclohexylundecanoic and 13-cyclohexyltridecanoic acids, were only found in lipid profiles from ruminant species, and a linear trend was observed in their content, together with iso-branched fatty acids (iso-BCFAs) deriving from ruminal fermentation, as a function of bovine meat percentage in both raw and cooked minced meat. Thus, CHFAs are potential biomarkers for the assurance of the meat species and, combined with iso-BCFAs, of the beef/pork ratio even in complex meat matrices. The proposed approaches are valuable novel tools for meat authentication, which is pivotal in the management of meat quality, safety, and traceability.
    • Partitioning of starter bacteria and added exogenous enzyme activities between curd and whey during Cheddar cheese manufacture

      Doolan, I. A.; Nongonierma, Alice B.; Kilcawley, Kieran; Wilkinson, M.G.; Department of Agriculture, Food and the Marine, Ireland; 04/R&D/C/238 (Elsevier, 26/07/2013)
      Partitioning of starter bacteria and enzyme activities was investigated at different stages of Cheddar cheese manufacture using three exogenous commercial enzyme preparations added to milk or at salting. The enzyme preparations used were: Accelase AM317, Accelase AHC50, Accelerzyme CPG. Flow cytometric analysis indicated that AHC50 or AM317 consisted of permeabilised or dead cells and contained a range of enzyme activities. The CPG preparation contained only carboxypeptidase activity. Approximately 90% of starter bacteria cells partitioned with the curd at whey drainage. However, key enzyme activities partitioned with the bulk whey in the range of 22%–90%. An increased level of enzyme partitioning with the curd was observed for AHC50 which was added at salting, indicating that the mode of addition influenced partitioning. These findings suggest that further scope exists to optimise both bacterial and exogenous enzyme incorporation into cheese curd to accelerate ripening.
    • Performances of full cross-validation partial least squares regression models developed using Raman spectral data for the prediction of bull beef sensory attributes

      Zhao, Ming; Nian, Yingqun; Allen, Paul; Downey, Gerard; Kerry, Joseph P.; O’Donnell, Colm P.; Teagasc Walsh Fellowship Programme (Elsevier BV, 2018-04-23)
      The data presented in this article are related to the research article entitled “Application of Raman spectroscopy and chemometric techniques to assess sensory characteristics of young dairy bull beef” [1]. Partial least squares regression (PLSR) models were developed on Raman spectral data pre-treated using Savitzky Golay (S.G.) derivation (with 2nd or 5th order polynomial baseline correction) and results of sensory analysis on bull beef samples (n = 72). Models developed using selected Raman shift ranges (i.e. 250–3380 cm−1, 900–1800 cm−1 and 1300–2800 cm−1) were explored. The best model performance for each sensory attributes prediction was obtained using models developed on Raman spectral data of 1300–2800 cm−1.
    • Physical, textural and sensory characteristics of reduced sucrose cakes, incorporated with clean-label sugar-replacing alternative ingredients

      Milner, Laura; Kerry, Joseph P.; O'Sullivan, Maurice G.; Gallagher, Eimear; Department of Agriculture, Food and the Marine (Elsevier BV, 2020-01)
      High levels of sucrose in foods present a great risk of obesity and type 2 diabetes. Therefore a low sucrose intake is strongly recommended. Sweet baked products incorporate high levels of sucrose. Sucrose in the original cake formulation was reduced and replaced with apple pomace, whey permeate, oligofructose, polydextrose. An acceptable sucrose reduction of between 21 and 27% was achieved. Cakes containing apple pomace had the lowest specific volume (1.8 cm3/g) and highest crumb firmness (8.60 N) (P < .05). Apple pomace and whey permeate had a significantly decreased L* values of the crust (P < .05). Moisture content of the cake crumb was increased significantly with the addition of oligofructose, whey permeate and polydextrose. All treatments resulted in a significant increase of the water activity of the cake crumb compared to the control (P < .05). Crumb cell structure was maintained as shown by 2-D and confocal imaging. Sensory trials revealed the reformulated cakes were acceptable to panellists.
    • Physicochemical Characteristics of Protein-Enriched Restructured Beef Steaks with Phosphates, Transglutaminase, and Elasticised Package Forming

      Baugreet, Sephora; Kerry, Joseph P.; Allen, Paul; Gallagher, Eimear; Hamill, Ruth; Irish Department of Agriculture, Food and the Marine; Teagasc Walsh Fellowship Programme; 11/F/045 (Hindawi Limited, 2018)
      Restructured beef steaks were formulated by adding protein-rich ingredients (pea protein isolate (PPI), rice protein (RP), and lentil flour (LF) (at 4 and 8%)), phosphate (0.2%), and two binding agents: 1% (TG) and 0.15% (TS). The effects of their addition on the physicochemical properties of the beef steaks were investigated. Protein content of the RP8TG sample was significantly higher than that of the control in both the raw and cooked state. Raw LF4TS exhibited greater () a values than the control; however, after the cooking process, L, a, and b values were similar for all treatments. Textural assessment showed that elevating protein level increased () hardness, chewiness, cohesiveness, and gumminess in cooked restructured steaks. LF addition reduced all textural values assessed, indicating a strong plant protein effect on texture modification. The commercial binder produced a better bind in combination with protein ingredients. This facilitated the production of uniformed restructured beef steaks from low-value beef muscles with acceptable quality parameters using a novel process technology.
    • Potential applications for virtual and augmented reality technologies in sensory science

      Crofton, Emily C.; Botinestean, Cristina; Fenelon, Mark; Gallagher, Eimear (Elsevier, 2019-06-19)
      Sensory science has advanced significantly in the past decade and is quickly evolving to become a key tool for predicting food product success in the marketplace. Increasingly, sensory data techniques are moving towards more dynamic aspects of sensory perception, taking account of the various stages of user-product interactions. Recent technological advancements in virtual reality and augmented reality have unlocked the potential for new immersive and interactive systems which could be applied as powerful tools for capturing and deciphering the complexities of human sensory perception. This paper reviews recent advancements in virtual and augmented reality technologies and identifies and explores their potential application within the field of sensory science. The paper also considers the possible benefits for the food industry as well as key challenges posed for widespread adoption. The findings indicate that these technologies have the potential to alter the research landscape in sensory science by facilitating promising innovations in five principal areas: consumption context, biometrics, food structure and texture, sensory marketing and augmenting sensory perception. Although the advent of augmented and virtual reality in sensory science offers new exciting developments, the exploitation of these technologies is in its infancy and future research will understand how they can be fully integrated with food and human responses. Industrial relevance: The need for sensory evaluation within the food industry is becoming increasingly complex as companies continuously compete for consumer product acceptance in today's highly innovative and global food environment. Recent technological developments in virtual and augmented reality offer the food industry new opportunities for generating more reliable insights into consumer sensory perceptions of food and beverages, contributing to the design and development of new products with optimised consumer benefits. These technologies also hold significant potential for improving the predictive validity of newly launched products within the marketplace.
    • Predicting the eating quality of meat

      Mullen, Anne Maria; Murray, Brendan; Troy, Declan J.; European Union (Teagasc, 2000-12)
      A novel, water soluble protein fragment [1735Da] was isolated from beef striploin and characterised. As soluble components of the proteolytic system are easily extracted from muscle they may be suitable for routine factory analysis. This fragment originated from the important myofibrillar protein, troponin T and may serve as a tenderness indicator.
    • Preliminary investigation of the antimicrobial and mechanisms of resistance of Enterobacteria isolated from minced meat in the Northeast of Algeria: The case of butchers from Constantine

      Leila Dib, Amira; Chahed, Amina; Lakhdara, Nedjoua; Agabou, Amir; Boussena, Sabrina; Ghougal, Khireddine; Lamri, Melisa; Sana Kerrour, Nessrine; Kadja, Louiza; Bouaziz, Assia; et al. (Open Access Text Pvt, Ltd., 2019)
      Food products of animal origin such as fresh meat are easily contaminated by microorganisms if handling, processing and storage conditions are not fully respected. The present study aimed first to evaluate the bacterial load and microbial contamination rates of ground raw beef to identify the main pathogenic flora that dominate and second, to determine the resistance patterns and extended-spectrum beta-lactamase (ESBL) of isolated Gram-negative strains against certain families of antibiotics. Therefore, 39 samples have been collected from 5 butcher shops located in Constantine province in the North-East of Algeria. The samples were analysed for total bacterial count, presence of total and faecal coliforms, Staphylococci and Salmonella. Furthermore, 23 antibiotics were tested using the diffusion method on Mueller-Hinton agar, towards 22 strains isolates. Bacterial analyses showed a high contamination by total aerobic bacteria, total and faecal coliforms. Escherichia coli, Citrobacter spp., Enterobacter spp., Hafnia alvei, Salmonella pullorum and Staphylococcus spp (except Staphylococcus aureus) were further revealed in some samples. The results of the antibiogram test exhibit multi-resistance to more than eight antibiotics with varied effects. From the whole tested strains isolates, the fully susceptibility effect was for spectinomycin (SPT). This study reveals that the analysed minced meat was found to be highly contaminated with antibiotic resistant bacteria. This study allows concluding that appropriate use of antibiotics in compliance with good hygiene practices is essential to reduce the antibiotic resistance identified in this preliminary study.
    • Preliminary study on the use of near infrared hyperspectral imaging for quantitation and localisation of total glucosinolates in freeze-dried broccoli

      Hernandez-Hierro, Jose Miguel; Esquerre, Carlos; Valverde, Juan; Villacreces, Salvador; Reilly, Kim; Gaffney, Michael; Gonzalez-Miret, Maria Lourdes; Heredia, Francisco J.; O'Donnell, Colm P.; Downey, Gerard; et al. (Elsevier, 15/11/2013)
      The use of hyperspectral imaging to (a) quantify and (b) localise total glucosinolates in florets of a single broccoli species has been examined. Two different spectral regions (vis–NIR and NIR), a number of spectral pre-treatments and different mask development strategies were studied to develop the quantitative models. These models were then applied to freeze-dried slices of broccoli to identify regions within individual florets which were rich in glucosinolates. The procedure demonstrates potential for the quantitative screening and localisation of total glucosinolates in broccoli using the 950–1650 nm wavelength range. These compounds were mainly located in the external part of florets.
    • Protein Array-Based Approach to Evaluate Biomarkers of Beef Tenderness and Marbling in Cows: Understanding of the Underlying Mechanisms and Prediction

      Gagaoua, Mohammed; Bonnet, Muriel; Picard, Brigitte; Pays de Loire Regional Council (MDPI AG, 2020-08-26)
      This study evaluated the potential of a panel of 20 protein biomarkers, quantified by Reverse Phase Protein Array (RPPA), to explain and predict two important meat quality traits, these being beef tenderness assessed by Warner–Bratzler shear force (WBSF) and the intramuscular fat (IMF) content (also termed marbling), in a large database of 188 Protected Designation of Origin (PDO) Maine-Anjou cows. Thus, the main objective was to move forward in the progression of biomarker-discovery for beef qualities by evaluating, at the same time for the two quality traits, a list of candidate proteins so far identified by proteomics and belonging to five interconnected biological pathways: (i) energy metabolic enzymes, (ii) heat shock proteins (HSPs), (iii) oxidative stress, (iv) structural proteins and (v) cell death and protein binding. Therefore, three statistical approaches were applied, these being Pearson correlations, unsupervised learning for the clustering of WBSF and IMF into quality classes, and Partial Least Squares regressions (PLS-R) to relate the phenotypes with the 20 biomarkers. Irrespective of the statistical method and quality trait, seven biomarkers were related with both WBSF and IMF, including three small HSPs (CRYAB, HSP20 and HSP27), two metabolic enzymes from the oxidative pathway (MDH1: Malate dehydrogenase and ALDH1A1: Retinal dehydrogenase 1), the structural protein MYH1 (Myosin heavy chain-IIx) and the multifunctional protein FHL1 (four and a half LIM domains 1). Further, three more proteins were retained for tenderness whatever the statistical method, among which two were structural proteins (MYL1: Myosin light chain 1/3 and TNNT1: Troponin T, slow skeletal muscle) and one was glycolytic enzyme (ENO3: β-enolase 3). For IMF, two proteins were, in this trial, specific for marbling whatever the statistical method: TRIM72 (Tripartite motif protein 72, negative) and PRDX6 (Peroxiredoxin 6, positive). From the 20 proteins, this trial allowed us to qualify 10 and 9 proteins respectively as strongly related with beef tenderness and marbling in PDO Maine-Anjou cows.
    • Proteomic biomarkers of beef colour

      Gagaoua, Mohammed; Hughes, Joanne; Terlouw, E.M. Claudia; Warner, Robyn D.; Purslow, Peter P.; Lorenzo, José M.; Picard, Brigitte; European Union; Enterprise Ireland; 713654; et al. (Elsevier BV, 2020-07)
      Background Implementation of proteomics over the last decade has been an important step toward a better understanding of the complex biological systems underlying the conversion of muscle to meat. These sophisticated analytical tools have helped to reveal the biochemical pathways involved in fresh meat colour and have identified key protein biomarkers. Scope and approach Until recently, there have been no detailed or critical studies on the role of protein biomarkers in determining meat colour. This review presents an integromics of recent muscle proteomic studies to investigate pathways and mechanisms of beef colour. A database was created from 13 independent proteomic-based studies including data on five muscles and a list of 79 proteins which were significantly correlated with colour traits. The database was subjected to a multistep analysis including Gene Ontology annotations, pathway analysis and literature mining. This report discusses the key protein biomarkers and the biological pathways associated with fresh beef colour. Biomarkers were prioritised by the frequency of identification and the need for future validation experiments is discussed. Key findings and conclusions This review identifies six pathways involved in beef colour including energy metabolism, heat shock and oxidative stress, myofibril structure, signalling, proteolysis and apoptosis. The data-mining of the list of the putative biomarkers showed that certain proteins, such as β-enolase (ENO3), Peroxiredoxin 6 (PRDX6), HSP27 (HSPB1), Phosphoglucomutase 1 (PGM1), Superoxide Dismutase [Cu-Zn] (SOD1) and μ-calpain (CAPN1) were consistently reported by multiple studies as being differentially expressed and having a significant role in beef colour. This integromics work proposes a list of 27 putative biomarkers of beef colour for validation using adapted high-throughput methods.
    • Proteomic biomarkers of beef colour

      Gagaoua, Mohammed; Hughes, Joanne; Terlouw, E.M. Claudia; Warner, Robyn D.; Purslow, Peter P.; Lorenzo, José M.; Picard, Brigitte; Marie Skłodowska-Curie grant agreement; Meat Technology Ireland; 713654; et al. (Elsevier, 2020-05-28)
      Background Implementation of proteomics over the last decade has been an important step toward a better understanding of the complex biological systems underlying the conversion of muscle to meat. These sophisticated analytical tools have helped to reveal the biochemical pathways involved in fresh meat colour and have identified key protein biomarkers. Scope and approach Until recently, there have been no detailed or critical studies on the role of protein biomarkers in determining meat colour. This review presents an integromics of recent muscle proteomic studies to investigate pathways and mechanisms of beef colour. A database was created from 13 independent proteomic-based studies including data on five muscles and a list of 79 proteins which were significantly correlated with colour traits. The database was subjected to a multistep analysis including Gene Ontology annotations, pathway analysis and literature mining. This report discusses the key protein biomarkers and the biological pathways associated with fresh beef colour. Biomarkers were prioritised by the frequency of identification and the need for future validation experiments is discussed. Key findings and conclusions This review identifies six pathways involved in beef colour including energy metabolism, heat shock and oxidative stress, myofibril structure, signalling, proteolysis and apoptosis. The data-mining of the list of the putative biomarkers showed that certain proteins, such as β-enolase (ENO3), Peroxiredoxin 6 (PRDX6), HSP27 (HSPB1), Phosphoglucomutase 1 (PGM1), Superoxide Dismutase [Cu-Zn] (SOD1) and μ-calpain (CAPN1) were consistently reported by multiple studies as being differentially expressed and having a significant role in beef colour. This integromics work proposes a list of 27 putative biomarkers of beef colour for validation using adapted high-throughput methods.
    • Reducing the incidence of boar taint in Irish pigs

      Allen, Paul; Joseph, Robin; Lynch, Brendan (Teagasc, 2001-04)
      Boar taint is an unpleasant odour that is released during cooking from some pork and products made from the meat and fat of non-castrated male pigs. Only a proportion of boars produce this odour and not all consumers are sensitive to it. Nevertheless it is a potential problem for the industry since an unpleasant experience can mean that a sensitive consumer may not purchase pork or pork products again. Some European countries are very concerned about this problem and most castrate all the male pigs not required for breeding. Irish pig producers ceased castration more than 20 years ago because boars are more efficient converters of feed into lean meat and a research study had shown that boar taint was not a problem at the carcass weights used in this country at that time.