• Inclusion of Healthy Oils for Improving the Nutritional Characteristics of Dry-Fermented Deer Sausage

      Vargas-Ramella, Márcio; Munekata, Paulo E. S.; Gagaoua, Mohammed; Franco, Daniel; Campagnol, Paulo C. B.; Pateiro, Mirian; Barretto, Andrea Carla da Silva; Domínguez, Rubén; Lorenzo, José M.; CYTED; et al. (MDPI AG, 2020-10-18)
      The influence of partial replacement of animal fat by healthy oils on composition, physicochemical, volatile, and sensory properties of dry-fermented deer sausage was evaluated. Four different batches were manufactured: the control was formulated with animal fat (18.2%), while in the reformulated batches the 50% of animal fat was substituted by olive, canola, and soy oil emulsions immobilized in Prosella gel. The reformulation resulted in a decrease of moisture and fat contents and an increase of protein and ash amount. Moreover, reformulated sausages were harder, darker, and had higher pH values. This fact is related to the lower moisture content in these samples. As expected, the fatty acid composition was changed by the reformulation. The use of soy and canola oils increased polyunsaturated fatty acids and omega-3 content and decreased n-6/n-3 ratio and saturated fatty acids. Thus, the use of these two oils presented the best nutritional benefits. The changes observed in the fatty acids reflected the fatty acid composition of the oils employed in the emulsions. Regarding volatile compounds (VOC), the replacement of animal fat by healthy emulsion gels increased the content of both total VOC and most of individual VOC. However, the lipid-derived VOC did not show this trend. Generally speaking, the control samples presented similar or higher VOC derived from lipid oxidation processes, which could be related to the natural antioxidant compounds present in the vegetable oils. Finally, all reformulated sausages presented higher consumer acceptability than control samples. In fact, the sausage reformulated with soy oil emulsion gel was the most preferred. Thus, as a general conclusion, the reformulation of deer sausages with soy emulsion gel improves both composition and sensory quality of the final product, which could be an excellent strategy to the elaboration of healthy fermented sausages.
    • Influence of chaperone-like activity of caseinomacropeptide on the gelation behaviour of whey proteins at pH 6.4 and 7.2.

      Gaspard, Sophie J.; Sharma, Prateek; Fitzgerald, Ciarán; Tobin, John T.; O’Mahony, James A.; Kelly, Alan L.; Brodkorb, Andre; Dairy Research Ireland; Teagasc Walsh Fellowship Programme; European Union; et al. (Elsevier, 2020-08-15)
      The effect of caseinomacropeptide (CMP) on the heat-induced denaturation and gelation of whey proteins (2.5–10%, w/v) at pH 6.4 and 7.2, at a whey protein:CMP ratio of 1:0.9 (w/w), was investigated using differential scanning calorimetry (DSC), oscillatory rheology (90 °C for 20 min) and confocal microscopy. Greater frequency-dependence in the presence of CMP suggested that the repulsive interactions between CMP and the whey proteins affected the network generated by the non-heated whey protein samples. At pH 6.4 or 7.2, CMP increased the temperature of denaturation of β-lactoglobulin by up to 3 °C and increased the gelation temperature by up to 7 °C. The inclusion of CMP strongly affected the structure of the heat-induced whey protein gels, resulting in a finer stranded structure at pH 6.4 and 7.2. The presence of CMP combined with a lower heating rate (2 °C/min) prevented the formation of a solid gel of whey proteins after heating for 20 min at 90 °C and at pH 7.2. These results show the potential of CMP for control of whey protein denaturation and gelation.
    • Influence of high-pressure processing on quality attributes of haddock and mackerel minces during frozen storage, and fishcakes prepared thereof

      Cropotova, Janna; Mozuraityte, Revilija; Standal, Inger Beate; Ojha, Shikha; Rustad, Turid; Tiwari, Brijesh K; European Union; RCN 259582/E50 (Elsevier BV, 2020-01)
      The study focused on assessing quality parameters of haddock and mackerel minces subjected to a high-pressure treatment (HP) at 200 and 300 MPa and frozen storage at −40 °C. Dry matter, water-holding capacity, protein solubility and oxidation, lipid oxidation, microbiological parameters, low molecular weight metabolites (LMW) and color parameters, were analyzed. The texture of fishcakes prepared on the basis of these fish minces was also studied, showing a decrease in firmness along with an increase in pressure. A marked inhibition of microbial growth was observed in fish minces when increasing the pressure level of HP-treatment. However, no significant effect (p < 0.05) on the content of primary and secondary lipid oxidation products was observed between untreated and 300 MPa-pressurized fish samples. The results suggested that HP-treatment could be successfully applied to both lean and fatty fish samples for reduction of microbial growth with minor changes in product quality. Industrial relevance. The application of high pressure (HP) treatment of 200 and 300 MPa could be successfully applied to both lean and fatty fish species before freezing for reduction of microbial growth. The degree of lipid oxidation is decreasing with an increase in pressure as a result of inactivation of prooxidative endogenous enzymes. Fish minces become slightly lighter and softer after HP-treatment conducted at 200 MPa due to denaturation of proteins, thus enhancing sensory properties of fishcakes prepared thereof.
    • Influence of particle size on the physicochemical properties and stickiness of dairy powders

      O'Donoghue, Laura T.; Haque, Md Kamrul; Kennedy, Deirdre; Laffir, Fathima R.; Hogan, Sean A.; O'Mahony, James A.; Murphy, Eoin G.; Enterprise Ireland; TC/2014/0016 (Elsevier BV, 2019-11)
      The compositional and physicochemical properties of different whey permeate (WPP), demineralised whey (DWP) and skim milk powder (SMP) size fractions were investigated. Bulk composition of WPP and DWP was significantly (P < 0.05) influenced by powder particle size; smaller particles had higher protein and lower lactose contents. Microscopic observations showed that WPP and DWP contained both larger lactose crystals and smaller amorphous particles. Bulk composition of SMP did not vary with particle size. Surface composition of the smallest SMP fraction (<75 μm) showed significantly lower protein (−9%) and higher fat (+5%) coverage compared with non-fractionated powders. For all powders, smaller particles were more susceptible to sticking. Hygroscopicity of SMP was not affected by particle size; hygroscopicity of semi-crystalline powders was inversely related to particle size. This study provides insights into differences between size fractions of dairy powders, which can potentially impact the sticking/caking behaviour of fine particles during processing.
    • Interaction of salt content and processing conditions drives the quality response in streaky rashers

      Delgado-Pando, Gonzalo; Allen, Paul; Kerry, Joseph P.; O'Sullivan, Maurice G.; Hamill, Ruth; Department of Agriculture, Food and the Marine; 11F 026 (Elsevier, 2018-07-26)
      Response surface methodology was utilised to explore the relationship between processing conditions, including cooking temperature and drying time, and ingredients in reduced-salt streaky rasher formulations. The goal of this project was to assess the impact of reducing salt content on physicochemical and sensory properties. Salt levels above 2.44 g/100 g did not affect cooking loss. Cooking temperature (240 °C) was negatively correlated with lightness and redness, n-3 fatty acids, and sensory acceptance, and positively correlated with hardness and monounsaturated fatty acids. Salt content was highly correlated with perceived saltiness and both were identified as negative attributes by the sensory panel. Results indicate that optimised reduced-salt streaky rashers with acceptable technological and sensory performance could be achieved under the following conditions: 2 g/100 g salt, 94 min of drying and grilling at 190 °C.
    • Investigating the use of visible and near infrared spectroscopy to predict sensory and texture attributes of beef M. longissimus thoracis et lumborum

      Cafferky, Jamie; Sweeney, Torres; Allen, Paul; Sahar, Amna; Downey, Gerard; Cromie, A. R.; Hamill, Ruth; Department of Agriculture, Food and the Marine; 11/SF/311 (Elsevier, 2019-08-16)
      The aim of this study was to calibrate chemometric models to predict beef M. longissimus thoracis et lumborum (LTL) sensory and textural values using visible-near infrared (VISNIR) spectroscopy. Spectra were collected on the cut surface of LTL steaks both on-line and off-line. Cooked LTL steaks were analysed by a trained beef sensory panel as well as undergoing WBSF analysis. The best coefficients of determination of cross validation (R2CV) in the current study were for textural traits (WBSF = 0.22; stringiness = 0.22; crumbly texture = 0.41: all 3 models calibrated using 48 h post-mortem spectra), and some sensory flavour traits (fatty mouthfeel = 0.23; fatty after-effect = 0.28: both calibrated using 49 h post-mortem spectra). The results of this experiment indicate that VISNIR spectroscopy has potential to predict a range of sensory traits (particularly textural traits) with an acceptable level of accuracy at specific post-mortem times.
    • Measuring the lean content of carcasses using TOBEC

      Allen, Paul; McGeehin, Brian (Teagasc, 2001-05)
      This project examined the potential of two objective methods of measuring the lean and fat content of meat carcasses and cuts. Total Body Electrical Conductivity (TOBEC) and Bioelectrical Impedance Analysis (BIA) are both based on the different conductivity of lean and fat tissues. TOBEC measures the absorption by a carcass or cut of electrical energy from an electromagnetic field whereas BIA measures the resistance to the flow of an electrical current. TOBEC is a large and relatively expensive piece of equipment that is fully automated. BIA is small and relatively low cost but requires an operator.
    • Meat quality characteristics of high dairy genetic-merit Holstein, standard dairy genetic-merit Friesian and Charolais × Holstein-Friesian steers

      McGee, Mark; Keane, Michael G.; Neilan, R.; Caffrey, P.J.; Moloney, Aidan (Compuscript Ltd.Teagasc, 2021-03-05)
      The increased use of Holstein genetic material in the Irish dairy herd has consequences for beef production. In all, 42 spring-born steers [14 Holsteins (HO), 14 Friesian (FR) and 14 Charolais × Holstein-Friesian (CH)] were reared to slaughter at between 26 and 37 mo of age. Carcass weight was higher and the lipid concentration of m. longissimus thoracis et lumborum was lower (P < 0.05) for CH than the dairy breeds. Overall acceptability tended to be lower (P = 0.055) while tenderness, texture and chewiness were lower (P < 0.05) for CH compared with the dairy breeds. The proportion of C16:1 in the total lipid tended to be lower (P = 0.055) for CH than the dairy breeds. Replacing male offspring of traditional “Irish” Friesian bulls with offspring from a genetically superior (from a dairy perspective) strain of Holstein bull had no commercially important impact on beef nutritional or eating quality.
    • Mechanical and Biochemical Methods for Rigor Measurement: Relationship with Eating Quality

      Álvarez García, Carlos; Morán, Lara; Keenan, Derek F.; Mullen, Anne Maria; Delgado-Pando, Gonzalo; Basque Government; IT944-16 (Hindawi, 2019-06-13)
      Meat quality parameters are affected by a complex series of interacting chemical, biochemical, physical, and physiological components that determine not only the suitability for consumption and the conditions for further processing and storage but also consumer acceptability. Deep understanding and careful manipulation of these intrinsic and extrinsic factors have to be taken in account to ensure high quality of meat, with better technological properties and increased safety for consumers. Among meat quality characteristics, meat tenderness has been perceived as the most important factor governing consumer acceptability. Therefore, being able to early predict meat texture and other related parameters in order to guarantee consistent eating quality to the final consumer is one of the most sought-after goals in the meat industry. Accurate measurements of both the biochemical and mechanical characteristics that underpin muscle and its transformation into meat are key factors to an improved understanding of meat quality, but also this early-stage measurements may be useful to develop methods to predict final meat texture. It is the goal of this review to present the available research literature on the historical and contemporary analyses that could be applied in early postmortem stages (pre-rigor and rigor) to determine the biochemical and physical characteristics of the meat that can potentially impact the eating quality.
    • Mechanical Grading of beef carcasses

      Allen, Paul; Finnerty, Nicholas; European Union; European Union (Teagasc, 2001-10)
      Three beef carcass classification systems that use Video Image Analysis (VIA) technology were tested in two trials at Dawn Meats Midleton, Co. Cork. The VIA systems were BCC2, manufactured by SFK Technology, Denmark, VBS2000, manufactured by E+V, Germany, and VIAscan, manufactured by Meat and Livestock Australia. The first trial, conducted over a 6-week period in July/August 1999, calibrated the VIA systems on a large sample of carcasses and validated these calibrations on a further sample obtained at the same time. The second trial, conducted in the first two weeks of March 2000, was a further validation trial. The reference classification scores were determined by a panel of three experienced classifiers using the EUROP grid with 15 subclasses for conformation class and 15 sub-classes for fat. In the first trial the accuracy of the VIA systems at predicting saleable meat yield in steer carcasses was also assessed.
    • Meta-proteomics for the discovery of protein biomarkers of beef tenderness: An overview of integrated studies

      Picard, Brigitte; Gagaoua, Mohammed; Marie Skłodowska-Curie Grant; Enterprise Ireland; Pôle Aquitain Agro-Alimentation et Nutrition; National Institute of Agronomical Research; National Institute of Origin and Quality; FNADT Massif Central; DATAR Massif Central; ANR GenAnimal; et al. (Elsevier BV, 2020-01)
      This meta-proteomics review focused on proteins identified as candidate biomarkers of beef tenderness by comparing extreme groups of tenderness using two-dimensional electrophoresis (2-DE) associated with mass spectrometry (MS). We reviewed in this integromics study the results of 12 experiments that identified protein biomarkers from two muscles, Longissimus thoracis (LT) and Semitendinosus (ST), of different types of cattle: young bulls, steers or cows from beef breeds (Charolais, Limousin, Blond d’Aquitaine), hardy breed (Salers) or mixed breed (PDO Maine-Anjou). Comparative proteomics of groups differing in their tenderness evaluated by instrumental Warner-Bratzler shear force (WBSF) or by sensory analysis using trained panelists, revealed 61 proteins differentially abundant (P < 0.05) between tender and tough groups. A higher number of discriminative proteins was observed for LT (50 proteins) compared to ST muscle (28 proteins). The Gene Ontology annotations showed that the proteins of structure and contraction, protection against oxidative stress and apoptosis, energy metabolism, 70 family HSPs and proteasome subunits are more involved in LT tenderness than in ST. Amongst the list of candidate biomarkers of tenderness some proteins such as HSPB1 are common between the 2 muscles whatever the evaluation method of tenderness, but some relationships with tenderness for others (MYH1, TNNT3, HSPB6) are inversed. Muscle specificities were revealed in this meta-proteomic study. For example, Parvalbumin (PVALB) appeared as a robust biomarker in ST muscle whatever the evaluation method of tenderness. HSPA1B seems to be a robust candidate for LT tenderness (with WBSF) regardless the animal type. Some gender specificities were further identified including similarities between cows and steers (MSRA and HSPA9) in contrast to bulls. The comparison of the 12 proteomic studies revealed strong dissimilarities to identify generic biomarkers of beef tenderness. This integrative analysis allowed better understanding of the biological processes involved in tenderness in two muscles and their variations according to the main factors underlying this quality. It allowed also proposing for the first time a comprehensive list of candidate biomarkers to be evaluated deeply to validate their relationships with tenderness on a large number of cattle and breeds.
    • Model System for the Production of Enzyme Modified Cheese (EMC) Flavours.

      Kilcawley, Kieran; Beresford, Tom; Lee, B.; Wilkinson, M.G.; Department of Agriculture, Food and the Marine, Ireland; Irish Dairy Levy Research Trust (Teagasc, 01/04/2002)
      Natural cheese flavour ingredients, in the form of enzyme modified cheeses (EMCs), are widely used in the convenience food industry and can provide high volume added opportunities for the cheese industry. Many EMCs are produced using commercial enzyme preparations and previous studies have indicated that they contain side activities in addition to their stated main activity (see DPRC Report No.10). Therefore, it is critical that the exact enzyme complement of these preparations are known before they can be used to produce EMC of specific requirements on a consistent basis. The scientific basis of rapid enzyme mediated flavour formation in the production of EMCs is not fully understood. Consequently this knowledge gap is a major obstacle in the development of high value cheese flavour ingredients. Hence, a major objective of this project was to deepen the scientific understanding of flavour formation with a view to the production of natural enzyme-mediated dairy flavour ingredients with commercial potential. The ultimate aim was to develop the technology to produce customised high value dairy flavour ingredients in an optimised process.
    • Monitoring post mortem changes in porcine muscle through 2-D DIGE proteome analysis of Longissimus muscle exudate

      Di Luca, Alessio; Elia, Giuliano; Mullen, Anne Maria; Hamill, Ruth M; Department of Agriculture, Food and the Marine, Ireland; 06RDNUIG470 (Biomed Central, 20/03/2013)
      Background: Meat quality is a complex trait influenced by a range of factors with post mortem biochemical processes highly influential in defining ultimate quality. High resolution two-dimensional DIfference Gel Electrophoresis (2-D DIGE) and Western blot were applied to study the influence of post mortem meat ageing on the proteome of pork muscle. Exudate collected from the muscle following centrifugation was analysed at three timepoints representing a seven day meat ageing period. Results: The intensity of 136 spots varied significantly (p < 0.05) across this post mortem period and 40 spots were identified using mass spectrometry. The main functional categories represented were metabolic proteins, stress-related proteins, transport and structural proteins. Metabolic and structural proteins were generally observed to increase in abundance post mortem and many likely represent the accumulation of the degradation products of proteolytic enzyme activity. In contrast, stress-related proteins broadly decreased in abundance across the ageing period. Stress response proteins have protective roles in maintaining cellular integrity and a decline in their abundance over time may correlate with a reduction in cellular integrity and the onset of meat ageing. Since cellular conditions alter with muscle ageing, changes in solubility may also contribute to observed abundance profiles. Conclusions: Muscle exudate provided valuable information about the pathways and processes underlying the post mortem ageing period, highlighting the importance of post mortem modification of proteins and their interaction for the development of meat quality traits.
    • Near infra-red spectroscopy in the food industry: a tool for quality management

      Downey, Gerard (Teagasc, 1999-03)
      Near infrared (NIR) spectroscopy is a rapid, non-destructive analytical technique which has been used in the food and agriculture industries for almost 20 years. Ireland was one of the first countries in the world to adopt this method for national trading purposes and the grain trade has used it for off-farm and in-process analysis since 1981. However, other sectors have been slower to realise its potential and as part of a process of demonstrating the role which it may play in monitoring quality in a range of food industry applications, a programme of research and development has been on-going within Teagasc and its predecessor An Foras Talúntais.
    • Near Infrared Spectroscopy in the Food Industry: A Tool of Quality Management.

      Downey, Gerard (Teagasc, 01/03/1999)
      Near infrared (NIR) spectroscopy is a rapid, non-destructive analytical technique which has been used in the food and agriculture industries for almost 20 years. Ireland was one of the first countries in the world to adopt this method for national trading purposes and the grain trade has used it for off-farm and in-process analysis since 1981. However, other sectors have been slower to realise its potential and as part of a process of demonstrating the role which it may play in monitoring quality in a range of food industry applications, a programme of research and development has been on-going within Teagasc and its predecessor An Foras Talúntais. NIR spectroscopy provides the food processor with information. This information may describe how much of a given substance is present in a mixture or how the overall quality of the substance compares to a reference material e.g. a previous batch of raw material, finished goods or a competitor’s product. This report provides some examples of precompetitive R&D on representative qualitative and quantitative problems in a range of foods and food ingredients. The use of NIR spectra collected within 24 hours of slaughter to predict beef tenderness 14 days later shows considerable promise. Non-destructive monitoring of flesh composition in farmed salmon has paved the way for the efficient use of expensive feed materials while the content of each species in binary mixtures of minced beef and lamb has been accurate enough to suggest the use of NIR spectroscopy as a rapid screening tool by regulatory agencies, food processors and retailers. Classification of a range of food ingredients (including skim milk powder and flour) into one of a number of functionally-discrete categories has been successfully achieved with levels of accuracy high enough to warrant immediate industry utilisation i.e. greater than 90% for skim milk powders and 97% in the case of flour. Species confirmation in a number of raw minced meats (chicken, turkey, pork, beef and lamb) has been achieved with over 90% accuracy in feasibility studies. Calibrations transferred from one NIR instrument to another lose accuracy because of differences in instrument construction, sample presentation and other factors. A research effort has recently been applied to this problem of transferability and results are available for both scanning and fixed filter instruments. The success achieved opens the way for using NIR results obtained in different companies or countries as an uncontested basis for trade.
    • New technologies in the manufacture of low fat meat products

      Allen, Paul; Dreeling, Niamh; Desmond, Eoin; Hughes, Eimear; Mullen, Anne Maria; Troy, Declan J. (Teagasc, 1999-02)
      The objective of this project was to provide a sound scientific basis for the development of low fat meat products. The emphasis was placed on identifying the barriers to producing high quality, low fat meat products and providing a knowledge base for manufacturers to overcome these, rather than actually developing new products. Each partner had specific tasks and worked with traditional products of their country. A wide range of products was thereby studied including comminuted, emulsion, cured and dried fermented, so that the results are widely applicable.
    • New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry

      Coughlan, Laura M.; Cotter, Paul D.; Hill, Colin; Alvarez-Ordonez, Avelino; Science Foundation Ireland; 13/SIRG/2157 (Frontiers, 18/10/2016)
      Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated with bacterial biofilms in the food industry and summarizes the recent strategies explored to inhibit biofilm formation, with special focus on those targeting quorum sensing.
    • A note on challenge trials to determine the growth of Listeria monocytogenes on mushrooms (Agaricus bisporus)

      Leong, Dara; Alvarez-Ordonez, Avelino; Jordan, Kieran; Safefood (Teagasc (Agriculture and Food Development Authority), Ireland, 30/12/2015)
      In the EU, food is considered safe with regard to Listeria monocytogenes if the number of micro-organisms does not exceed 100 colony forming units (cfu)/g throughout its shelf-life. Therefore, it is important to determine if a food supports growth of L. monocytogenes. Guidelines for conducting challenge tests for growth assessment of L. monocytogenes on foods were published by the European Union Reference Laboratory (EURL) in 2014. The aim of this study was to use these guidelines to determine if refrigerated, fresh, whole, closed-cap, prepackaged mushrooms (Agaricus bisporus) support the growth of L. monocytogenes. Three batches of mushrooms were artificially inoculated at approximately 100 cfu/g with a three-strain mix of L. monocytogenes and incubated for 2 days at 8°C followed by 4 days at 12°C. L. monocytogenes numbers were determined (in triplicate for each batch) on days 0, 2 and 6. Water activity, pH and total bacterial counts were also determined. There was no increase in the number of L. monocytogenes above the threshold of 0.5 log cfu/g in any of the replicates. In 8 of 9 replicates, the numbers decreased indicating that A. bisporus do not support the growth of L. monocytogenes. As the EU regulations allow < 100 cfu/g if the food cannot support growth of L. monocytogenes, the significance of this study is that mushrooms with < 100 cfu/g may be within the regulations and therefore, quantitative rather than qualitative determination may be required.
    • A note on muscle composition and colour of Holstein-Friesian, Piedmontese × Holstein-Friesian and Romagnola × Holstein-Friesian steers.

      Keane, Michael G.; Allen, Paul (Teagasc, Oak Park, Carlow, Ireland, 2009)
      Holstein-Friesian (HF), Piedmontese × Holstein-Friesian (PM) and Romagnola × Holstein-Friesian (RO) steers were compared for muscle composition and colour. A total of 120 steers in a 3 breed types (HF, PM and RO) × 2 feeding levels (low and high) × 2 finishing periods (short, S and extended, E) factorial experiment were used. Three samples of m. longissimus were taken for chemical analysis, measurement of drip loss and Hunterlab colour measurements. Muscle moisture and protein concentrations were lower, and lipid concentration was higher for HF than for PM and RO, which were similar. There were no effects of feeding level on chemical composition, but after blooming all colour values except hue were lower for the higher feeding level. The E finishing period reduced moisture, protein, drip-loss, L (lightness), a (redness) and chroma values. It is concluded that PM and RO had similar muscle composition but HF had a higher lipid concentration. Feeding level had few effects on muscle composition, but extended finishing increased all measures of fatness and reduced colour values.
    • Novel “gel demineralizing” method for protein recovery from fat rendering waste stream based on its gelling properties

      Álvarez García, Carlos; Drummond, Liana; Mullen, Anne Maria (Elsevier, 2018-11)
      Fat rendering is a common process in the meat industry, whereby fatty or oily materials are melted away or cooked from the solid portion of the animal tissue. Once the fat, and more solid protein in the form of greaves, has been removed a co-product called glue water or stick water is produced which in generally considered a waste product. This study was established to investigate ways to revalorise this product and reduce the economic and environmental impact of this waste material. Proximate characterisation shows it contains 1.1–1.3% w/w of protein along with similar concentration of ashes (1.3% w/w). While low in protein this is a key pollutant if the product is disposed of, and could also represent an interesting protein source for downstream applications. In order to recover these proteins the salt has to be removed. Therefore, after the techno-functional properties of the raw material and of the recovered proteins were evaluated, especially those related to gelling formation, a new demineralizing method based on the excellent gelling properties of these proteins was developed and results compared with those obtained from three different ultrafiltration membranes (10, 3 and 1 kDa MWCO). Protein recovery was greater for the new method (79–90%) (50–77%); however, the amount of salt removed was higher when ultrafiltration was employed (90% compared to 81%).