Isolation and characterisation of κ-casein/whey protein particles from heated milk protein concentrate and role of κ-casein in whey protein aggregation
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Citation
Sophie J. Gaspard, Mark A.E. Auty, Alan L. Kelly, James A. O'Mahony, André Brodkorb, Isolation and characterisation of κ-casein/whey protein particles from heated milk protein concentrate and role of κ-casein in whey protein aggregation, International Dairy Journal, 2017, 73, 98-108, doi 10.1016/j.idairyj.2017.05.012Abstract
Milk protein concentrate (79% protein) reconstituted at 13.5% (w/v) protein was heated (90 °C, 25 min, pH 7.2) with or without added calcium chloride. After fractionation of the casein and whey protein aggregates by fast protein liquid chromatography, the heat stability (90 °C, up to 1 h) of the fractions (0.25%, w/v, protein) was assessed. The heat-induced aggregates were composed of whey protein and casein, in whey protein:casein ratios ranging from 1:0.5 to 1:9. The heat stability was positively correlated with the casein concentration in the samples. The samples containing the highest proportion of caseins were the most heat-stable, and close to 100% (w/w) of the aggregates were recovered post-heat treatment in the supernatant of such samples (centrifugation for 30 min at 10,000 × g). κ-Casein appeared to act as a chaperone controlling the aggregation of whey proteins, and this effect was stronger in the presence of αS- and β-casein.Funder
Teagasc Walsh Fellowship Programme; Dairy Levy Research TrustGrant Number
2012211ae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.1016/j.idairyj.2017.05.012
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Optimisation of Ingredient Formulation in Processed Meat Products.O'Kennedy, Brendan; Neville, Denis P.; Kelly, Philip (Teagasc, 2000-10-01)Reformed and restructured meat are two major categories of processed meat products. Reformed meat products require intact meat pieces to bind together while restructured meat products are extensively minced prior to restructuring. Salts such as sodium chloride and phosphates together with mechanical treatment and heat, have been used to bind meat pieces together. In the process the proteins in muscle become soluble, bind large amounts of water and gel on heating. While heat-induced gelation of soluble meat protein provides binding in reformed meat products and reduces cook losses in restructured meat products, no binding occurs in raw meat systems. Non-meat proteins, especially soya protein, are routinely used in processed meat products, often in conjunction with salts, to increase water and fat binding during the cooking process. However, such proteins do not bind intact meat pieces in either the raw or cooked state. Transglutaminase (TGase) is a food-grade commercially available enzyme which can crosslink suitable proteins leading to the formation of a protein matrix (gel) and immobilisation of large quantities of water. This property could improve the water-binding properties of non-meat proteins in restructured meat products. The prospect of crosslinking native meat proteins and non-meat proteins or native meat proteins on adjacent meat pieces would make salt-free reformed meat products a realistic objective. Hence, the main objective of this project was to study protein-protein interactions in reformed and restructured meats, especially between meat proteins and added non-meat proteins in the absence of salts but in the presence of a protein crosslinking enzyme.
-
Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable EquilibriumHenchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark; Tiwari, Brijesh K; Department of Agriculture, Food and the Marine, Ireland; 11/F/043 (MDPI, 20/07/2017)A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure food security.
-
Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable EquilibriumHenchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark; Tiwari, Brijesh K; Department of Agriculture, Food and the Marine; 11/F/043 (MDPI, 2017-07-20)A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure food security.