Johnstown Castle is Ireland’s leading research centre for soils and the rural environment. The centre conducts research on soils; nutrient efficiency; recovery and losses; air and water quality; the agricultural environment and agro-ecology. The research results generated are used widely by advisors, farmers, scientists and policy makers.

Recent Submissions

  • An Immortalized Genetic Mapping Population for Perennial Ryegrass: A Resource for Phenotyping and Complex Trait Mapping

    Velmurugan, Janaki; Milbourne, Dan; Connolly, Vincent; Heslop-Harrison, J. S.; Anhalt, Ulrike C. M.; Lynch, M. B.; Barth, Susanne; Teagasc Walsh Fellowship Programme (Frontiers, 2018-05-31)
    To address the lack of a truly portable, universal reference mapping population for perennial ryegrass, we have been developing a recombinant inbred line (RIL) mapping population of perennial ryegrass derived via single seed descent from a well-characterized F2 mapping population based on genetically distinct inbred parents in which the natural self-incompatibility (SI) system of perennial ryegrass has been overcome. We examined whether it is possible to create a genotyping by sequencing (GBS) based genetic linkage map in a small population of the F6 generation of this population. We used 41 F6 genotypes for GBS with PstI/MspI-based libraries. We successfully developed a genetic linkage map comprising 6074 SNP markers, placing a further 22080 presence and absence variation (PAV) markers on the map. We examined the resulting genetic map for general and RIL specific features. Overall segregation distortion levels were similar to those experienced in the F2 generation, but segregation distortion was reduced on linkage group 6 and increased on linkage group 7. Residual heterozygosity in the F6 generation was observed at a level of 5.4%. There was a high proportion of chromosomes (30%) exhibiting the intact haplotype of the original inbred parents of the F1 genotype from which the population is derived, pointing to a tendency for chromosomes to assort without recombining. This could affect the applicability of these lines and might make them more suitable for situations where repressed recombination is an advantage. Inter- and intra-chromosomal linkage disequilibrium (LD) analysis suggested that the map order was robust. We conclude that this RIL population, and subsequent F7 and F8 generations will be useful for genetic analysis and phenotyping of agronomic and biological important traits in perennial ryegrass.
  • A Novel Multivariate Approach to Phenotyping and Association Mapping of Multi-Locus Gametophytic Self-Incompatibility Reveals S, Z, and Other Loci in a Perennial Ryegrass (Poaceae) Population

    Thorogood, Daniel; Yates, Steven; Manzanares, Chloé; Skot, Leif; Hegarty, Matthew; Blackmore, Tina; Barth, Susanne; Studer, Bruno; Biotechnology and Biological Sciences Research Council; Swiss National Science Foundation; Teagasc Walsh Fellowship Programme; BB/J004405/1; PP00P2 138988 (Frontiers, 2017-08-02)
    Self-incompatibility (SI) is a mechanism that many flowering plants employ to prevent fertilisation by self- and self-like pollen ensuring heterozygosity and hybrid vigour. Although a number of single locus mechanisms have been characterised in detail, no multi-locus systems have been fully elucidated. Historically, examples of the genetic analysis of multi-locus SI, to make analysis tractable, are either made on the progeny of bi-parental crosses, where the number of alleles at each locus is restricted, or on crosses prepared in such a way that only one of the SI loci segregates. Perennial ryegrass (Lolium perenne L.) possesses a well-documented two locus (S and Z) gametophytic incompatibility system. A more universal, realistic proof of principle study was conducted in a perennial ryegrass population in which allelic and non-allelic diversity was not artificially restricted. A complex pattern of pollinations from a diallel cross was revealed which could not possibly be interpreted easily per se, even with an already established genetic model. Instead, pollination scores were distilled into principal component scores described as Compatibility Components (CC1-CC3). These were then subjected to a conventional genome-wide association analysis. CC1 associated with markers on linkage groups (LGs) 1, 2, 3, and 6, CC2 exclusively with markers in a genomic region on LG 2, and CC3 with markers on LG 1. BLAST alignment with the Brachypodium physical map revealed highly significantly associated markers with peak associations with genes adjacent and four genes away from the chromosomal locations of candidate SI genes, S- and Z-DUF247, respectively. Further significant associations were found in a Brachypodium distachyon chromosome 3 region, having shared synteny with Lolium LG 1, suggesting further SI loci linked to S or extensive micro-re-arrangement of the genome between B. distachyon and L. perenne. Significant associations with gene sequences aligning with marker sequences on Lolium LGs 3 and 6 were also identified. We therefore demonstrate the power of a novel association genetics approach to identify the genes controlling multi-locus gametophytic SI systems and to identify novel loci potentially involved in already established SI systems.
  • Sustainability indicators for improved assessment of the effects of agricultural policy across the EU: Is FADN the answer?

    Kelly, Edel; Latruffe, Laure; Desjeux, Yann; Ryan, Mary; Uthes, Sandra; Diazabakanab, Ambre; Dillon, Emma; Finn, John; European Union; 613800 (Elsevier, 2018-06)
    Policy reform of the CAP and society’s expectations of agriculture have resulted in a growing need for improved information on the effectiveness of policy in achieving high-level objectives for more sustainable practice in agriculture. This is a high priority given its importance for consumers, public policy and private industry. Data collection programmes will need to adapt their scope if their information is to adequately address new information needs about high-level objectives. Assessment of sustainability at the farm level is hindered by the lack of data with which to derive appropriate, meaningful, and relevant indicators. This is particularly problematic for assessment of agricultural sustainability across the European Union (EU). Various databases exist at the EU scale regarding agricultural data sources and we identify one of these, the EU Farm Accountancy Data Network (FADN), as having considerable potential to assess farm-level sustainability at EU level. We critique several examples of published work that has attempted to assess agricultural sustainability using: FADN data alone; FADN data in combination with data from supplementary surveys, and; FADN data in combination with data from other EU databases. We conclude that the FADN would need to broaden its scope of data collection if it is to address the new information needs of policy, and we discuss the challenges in expanding FADN with a view towards wider farm-level assessment of sustainability. These include careful selection of indicators based on various criteria, the representativeness of the FADN, and the need to include new themes to address environmental, social, and animal welfare effects of policy.
  • Fertilizer Use Survey 1995

    Murphy, W. E.; Culleton, N.; Roche, M.; Power, D. (Teagasc, 1997)
    The farm management data for 1994 and 1995 were used as the basis for a fertilizer use survey. The samples were drawn up by the Central Statistics Office on the basis of farm size and farming system. The survey was carried out on 1226 farms.
  • Absence of Curli in Soil-Persistent Escherichia coli Is Mediated by a C-di-GMP Signaling Defect and Suggests Evidence of Biofilm-Independent Niche Specialization

    Somorin, Yinka M; Vollmerhausen, Tara; Waters, Nicholas; Pritchard, Leighton; Abram, Florence; Brennan, Fiona P.; O'Byrne, Conor; Thomas Crawford Hayes Research Award; NUI Galway College of Science (Frontiers, 2018-06-22)
    Escherichia coli is commonly viewed as a gastrointestinal commensal or pathogen although an increasing body of evidence suggests that it can persist in non-host environments as well. Curli are a major component of biofilm in many enteric bacteria including E. coli and are important for adherence to different biotic and abiotic surfaces. In this study we investigated curli production in a unique collection of soil-persistent E. coli isolates and examined the role of curli formation in environmental persistence. Although most soil-persistent E. coli were curli-positive, 10% of isolates were curli-negative (17 out of 170). Curli-producing E. coli (COB583, COB585, and BW25113) displayed significantly more attachment to quartz sand than the curli-negative strains. Long-term soil survival experiments indicated that curli production was not required for long-term survival in live soil (over 110 days), as a curli-negative mutant BW25113ΔcsgB had similar survival compared to wild type BW25113. Mutations in two genes associated with c-di-GMP metabolism, dgcE and pdeR, correlated with loss of curli in eight soil-persistent strains, although this did not significantly impair their survival in soil compared to curli-positive strains. Overall, the data indicate that curli-deficient and biofilm-defective strains, that also have a defect in attachment to quartz sand, are able to reside in soil for long periods of time thus pointing to the possibility that niches may exist in the soil that can support long-term survival independently of biofilm formation.
  • Risk Assessment of E. coli Survival Up to the Grazing Exclusion Period After Dairy Slurry, Cattle Dung, and Biosolids Application to Grassland

    Ashekuzzaman, S. M.; Richards, Karl; Ellis, S; Tyrrel, S; O'Leary, E; Griffiths, Bryan; Ritz, K; Fenton, Owen; European Union; 265269 (Frontiers in Sustainable Food Systems, 10/07/2018)
    Grassland application of dairy slurry, cattle dung, and biosolids offers an opportunity to recycle valuable nutrients (N, P, and K), which may all introduce pathogens to the soil environment. Herein, a temporal risk assessment of the survival of Escherichia coli (E. coli) up to 40 days in line with the legislated grazing exclusion time points after application was examined across six scenarios: (1) soil and biosolids mixture, (2) biosolids amended soil, (3) dairy slurry application, (4) cattle dung on pasture, (5) comparison of scenario 2, 3, and 4, and (6) maximum legal vs. excess rate of application for scenario 2 and 3. The risk model input parameters were taken or derived from regressions within the literature and an uncertainty analysis (n = 1,000 trials for each scenario) was conducted. Scenario 1 results showed that E. coli survival was higher in the soil/biosolids mixture for higher biosolids portion, resulting in the highest 20 day value of residual E. coli concentration (i.e., C20, log10 CFU g−1 dw) of 1.0 in 100% biosolids or inoculated soil and the lowest C20 of 0.098 in 75/25 soil/biosolids ratio, respectively, in comparison to an average initial value of 6.4 log10 CFU g−1 dw. The E. coli survival across scenario 2, 3, and 4 showed that the C20 value of biosolids (0.57 log10 CFU g−1 dw) and dairy slurry (0.74 log10 CFU ml−1) was 2.9–3.7 times smaller than that of cattle dung (2.12 log10 CFU g−1 dw). The C20 values of biosolids and dairy slurry associated with legal and excess application rates ranged from 1.14 to 1.71 log10 CFU ha−1, which is a significant reduction from the initial concentration range (12.99 to 14.83 log10 CFU ha−1). The E. coli survival in un-amended soil was linear with a very low decay rate resulting in a higher C20 value than that of biosolids or dairy slurry. The risk assessment and uncertainly analysis showed that the residual concentrations in biosolids/dairy slurry applied soil after 20 days would be 45–57% lower than that of the background soil E. coli concentration. This means the current practice of grazing exclusion times is safe to reduce the risk of E. coli transmission into the soil environment.
  • Application of Dexter’s soil physical quality index: an Irish case study

    Fenton, Owen; Vero, Sara; Schulte, Rogier P. O.; O'Sullivan, Lilian; Bondi, G.; Creamer, Rachel E.; Department of Agriculture, Food and the Marine, Ireland; 6582 (Teagasc (Agriculture and Food Development Authority), Ireland, 26/08/2017)
    Historically, due to a lack of measured soil physical data, the quality of Irish soils was relatively unknown. Herein, we investigate the physical quality of the national representative profiles of Co. Waterford. To do this, the soil physical quality (SPQ) S-Index, as described by Dexter (2004a,b,c) using the S-theory (which seeks the inflection point of a soil water retention curve [SWRC]), is used. This can be determined using simple (S-Indirect) or complex (S-Direct) soil physical data streams. Both are achievable using existing data for the County Waterford profiles, but until now, the suitability of this S-Index for Irish soils has never been tested. Indirect-S provides a generic characterisation of SPQ for a particular soil horizon, using simplified and modelled information (e.g. texture and SWRC derived from pedo-transfer functions), whereas Direct-S provides more complex site-specific information (e.g. texture and SWRC measured in the laboratory), which relates to properties measured for that exact soil horizon. Results showed a significant correlation between S-Indirect (Si) and S-Direct (Sd). Therefore, the S-Index can be used in Irish soils and presents opportunities for the use of Si at the national scale. Outlier horizons contained >6% organic carbon (OC) and bulk density (Bd) values <1 g/cm3 and were not suitable for Si estimation. In addition, the S-Index did not perform well on excessively drained soils. Overall correlations of Si. with Bd and of Si. with OC% for the dataset were detected. Future work should extend this approach to the national scale dataset in the Irish Soil Information System.
  • The interactive effects of various nitrogen fertiliser formulations applied to urine patches on nitrous oxide emissions in grassland

    Krol, Dominika J.; Minet, E.; Forrestal, Patrick J.; Lanigan, Gary; Mathieu, O.; Richards, Karl J.; Department of Agriculture, Food and the Marine, Ireland; RSF10/RD/SC/716; 11S138 (Teagasc (Agriculture and Food Development Authority), Ireland, 19/09/2017)
    Pasture-based livestock agriculture is a major source of greenhouse gas (GHG) nitrous oxide (N2O). Although a body of research is available on the effect of urine patch N or fertiliser N on N2O emissions, limited data is available on the effect of fertiliser N applied to patches of urinary N, which can cover up to a fifth of the yearly grazed area. This study investigated whether the sum of N2O emissions from urine and a range of N fertilisers, calcium ammonium nitrate (CAN) or urea ± urease inhibitor ± nitrification inhibitor, applied alone (disaggregated and re-aggregated) approximated the N2O emission of urine and fertiliser N applied together (aggregated). Application of fertiliser to urine patches did not significantly increase either the cumulative yearly N2O emissions or the N2O emission factor in comparison to urine and fertiliser applied separately with the emissions re-aggregated. However, there was a consistent trend for approximately 20% underestimation of N2O loss generated from fertiliser and urine applied separately when compared to figures generated when urine and fertiliser were applied together. N2O emission factors from fertilisers were 0.02%, 0.06%, 0.17% and 0.25% from urea ± dicyandiamide (DCD), urea + N-(n-butyl) thiophosphoric triamide (NBPT) + DCD, urea + NBPT and urea, respectively, while the emission factor for urine alone was 0.33%. Calcium ammonium nitrate and urea did not interact differently with urine even when the urea included DCD. N2O losses could be reduced by switching from CAN to urea-based fertilisers.
  • A rapid and multi-element method for the analysis of major nutrients in grass (Lolium perenne) using energy-dispersive X-ray fluorescence spectroscopy

    Daly, Karen; Fenelon, A. (Teagasc (Agriculture and Food Development Authority), Ireland, 21/04/2017)
    Elemental analysis of grass (Lolium perenne) is essential in agriculture to ensure grass quality and animal health. Energy-dispersive X-ray fluorescence (EDXRF) spectroscopy is a rapid, multi-element alternative to current methods using acid digestion and inductively coupled plasma optical emission spectrometry (ICP-OES). Percentage phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca), determined from grass samples using EDXRF, were within 0.035, 0.319, 0.025 and 0.061, respectively, of ICP-OES values. Concordance correlation coefficients computed using agreement statistics ranged from 0.4379 to 0.9669 (values close to one indicate excellent agreement); however, the level of agreement for each element depended on the calibrations used in EDXRF. Empirical calibrations gave excellent agreement for percentage P, K and Ca, but moderate agreement for percentage Mg due to a weaker correlation between standards and intensities. Standardless calibration using the fundamental parameters (FP) approach exhibited bias, with consistently lower values reported for percentage P and Mg, when compared with ICP-OES methods. The relationship between the methods was plotted as scatter plots with the line of equality included, and although correlation coefficients indicated strong relationships, these statistics masked the effects of consistent bias in the data for percentage P and Mg. These results highlight the importance of distinguishing agreement from correlation when using statistical methods to compare methods of analysis. Agreement estimates improved when a matching library of grass samples was added to the FP method. EDXRF is a comparable alternative to conventional methods for grass analysis when samples of similar matrix type are used as empirical standards or as a matching library.
  • Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    Samad, Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecilia A.M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.; New Zealand Fund for Global Partnerships in Livestock Emissions Research (Nature Publishing Group, 26/10/2016)
    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2.
  • Carbon cycling in temperate grassland under elevated temperature

    Jansen-Willems, Anne B.; Lanigan, Gary; Grunhage, Ludger; Muller, Christoph; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; RSF 10/SC/716 (Wiley, 01/11/2016)
    An increase in mean soil surface temperature has been observed over the last century, and it is predicted to further increase in the future. The effect of increased temperature on ecosystem carbon fluxes in a permanent temperate grassland was studied in a long-term (6 years) field experiment, using multiple temperature increments induced by IR lamps. Ecosystem respiration (R-eco) and net ecosystem exchange (NEE) were measured and modeled by a modified Lloyd and Taylor model including a soil moisture component for R-eco (average R2 of 0.78) and inclusion of a photosynthetic component based on temperature and radiation for NEE (R2 = 0.65). Modeled NEE values ranged between 2.3 and 5.3 kg CO2 m−2 year−1, depending on treatment. An increase of 2 or 3°C led to increased carbon losses, lowering the carbon storage potential by around 4 tonnes of C ha−1 year−1. The majority of significant NEE differences were found during night-time compared to daytime. This suggests that during daytime the increased respiration could be offset by an increase in photosynthetic uptake. This was also supported by differences in δ13C and δ18O, indicating prolonged increased photosynthetic activity associated with the higher temperature treatments. However, this increase in photosynthesis was insufficient to counteract the 24 h increase in respiration, explaining the higher CO2 emissions due to elevated temperature.
  • Can the agronomic performance of urea equal calcium ammonium nitrate across nitrogen rates in temperate grassland?

    Forrestal, Patrick J.; Harty, M.A.; Carolan, R.; Watson, C.J.; Lanigan, Gary; Wall, D.P.; Hennessy, Deirdre; Richards, Karl G.; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine, Ireland; Department of Agriculture, Environment and Rural Affairs, Northern Ireland (Wiley, 23/03/2017)
    In temperate grassland, urea has been shown to have lower nitrous oxide emissions compared to ammonium nitrate-based fertilizer and is less expensive. However, nitrogen (N) loss via ammonia volatilization from urea raises questions regarding yield performance and efficiency. This study compares the yield and N offtake of grass fertilized with urea, calcium ammonium nitrate (CAN) and urea treated with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) at six site-years. Five annual fertilizer N rates (100–500 kg N/ha) were applied in five equal splits of 20–100 kg N/ha during the growing season. On average, urea produced slightly better yields than CAN in spring (103.5% of CAN yield) and slightly poorer yields in summer (98.4% of CAN yield). There was no significant difference in annual grass yield between urea, CAN and urea + NBPT. Urea had the lowest cost per tonne of DM grass yield produced. However, the urea treatment had lower N offtake than CAN and this difference was more pronounced as the N rate increased. There was no difference in N offtake between urea + NBPT and CAN. While this study shows that urea produced yields comparable to CAN, urea apparent fertilizer N recovery (AFNR) tends to be lower. Urea selection in place of CAN will increase national ammonia emissions which is problematic for countries with targets to reduce ammonia emissions. Promisingly, NBPT allows the agronomic performance of urea to consistently equal CAN across N rates by addressing the ammonia loss limitations of urea.
  • Gross nitrogen transformations in grassland soil react differently to urea stabilisers under laboratory and field conditions

    Harty, M.A.; McGeough, K.L.; Carolan, R.; Muller, C.; Laughlin, R.J.; Lanigan, Gary; Richards, Karl G.; Watson, C.J.; Department of Agriculture, Food and the Marine, Ireland; Department of Agriculture, Environment and Rural Affairs, Northern Ireland; Teagasc Walsh Fellowship Programme; RSF10-/RD/SC/716; RSF11S138) (Elsevier, 10/02/2017)
    A laboratory and a field study were conducted on a permanent grassland soil in Northern Ireland to investigate the effects of urea in combination with N process inhibitors such as the urease inhibitor N-(butyl) thiophosphoric triamide (NBPT) and/or the nitrification inhibitor dicyandiamide (DCD) on soil N dynamics. Urea enriched with n-butyl 15N to 60 atom % was applied to soil at a rate of 100 μg N g−1 dry soil in the laboratory and 100 kg N ha−1 in the field. A numerical 15N tracing model was used to quantify several simultaneously occurring gross N transformation rates in both studies. The changes in soil nitrate (NO3−) and ammonium (NH4+) concentrations and 15N enrichment over a 25-day period as well as the concentration and 15N enrichment of plant N at harvest were used to model soil gross N transformations. The results showed that the effect of N process inhibitors varied firstly between laboratory and field studies and secondly whether the inhibitors were applied individually or in combination. Overall DCD had a greater effect on the major soil N transformations than NBPT; reducing oxidation of NH4+, total nitrification, net NO3− produced, total mineralisation and the net adsorption of NH4+ at both laboratory and field scale. The effect of DCD was similar for these transformations whether applied alone or co-applied with NBPT. In contrast NBPT had no significant effect on oxidation of NH4+, total nitrification, total mineralisation or total immobilisation compared to urea in the field, while the effect on these transformations in the laboratory was significant. The contrasting effects of inhibitors on gross N transformations between laboratory and field may relate to the differences in experimental conditions, e.g. soil preparation, environmental conditions and the contribution of plant biomass. To obtain a more realistic assessment of gross soil N transformations in situ, it is essential that laboratory experiments are supplemented with field studies.
  • Groundwater nitrate reduction versus dissolved gas production: A tale of two catchments

    McAleer, E.B.; Coxon, C.E.; Richards, Karl G.; Jahangir, M.M.R.; Grant, Jim; Mellander, Per-Erik; Teagasc Walsh Fellowship Programme (Elsevier, 20/02/2017)
    At the catchment scale, a complex mosaic of environmental, hydrogeological and physicochemical characteristics combine to regulate the distribution of groundwater and stream nitrate (NO3−). The efficiency of NO3− removal (via denitrification) versus the ratio of accumulated reaction products, dinitrogen (excess N2) & nitrous oxide (N2O), remains poorly understood. Groundwater was investigated in two well drained agricultural catchments (10 km2) in Ireland with contrasting subsurface lithologies (sandstone vs. slate) and landuse. Denitrification capacity was assessed by measuring concentration and distribution patterns of nitrogen (N) species, aquifer hydrogeochemistry, stable isotope signatures and aquifer hydraulic properties. A hierarchy of scale whereby physical factors including agronomy, water table elevation and permeability determined the hydrogeochemical signature of the aquifers was observed. This hydrogeochemical signature acted as the dominant control on denitrification reaction progress. High permeability, aerobic conditions and a lack of bacterial energy sources in the slate catchment resulted in low denitrification reaction progress (0–32%), high NO3− and comparatively low N2O emission factors (EF5g1). In the sandstone catchment denitrification progress ranged from 4 to 94% and was highly dependent on permeability, water table elevation, dissolved oxygen concentration solid phase bacterial energy sources. Denitrification of NO3 − to N2 occurred in anaerobic conditions, while at intermediate dissolved oxygen; N2O was the dominant reaction product. EF5g1 (mean: 0.0018) in the denitrifying sandstone catchment was 32% less than the IPCC default. The denitrification observations across catchments were supported by stable isotope signatures. Stream NO3− occurrence was 32% lower in the sandstone catchment even though N loading was substantially higher than the slate catchment.
  • A field-based comparison of ammonia emissions from six Irish soil types following urea fertiliser application

    Burchill, William; Lanigan, Gary; Forrestal, Patrick J.; Reville, F.; Misselbrook, T.; Rochards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; RSF 13/S/430 (Teagasc (Agriculture and Food Development Authority), Ireland, 30/12/2016)
    Ammonia (NH3) emissions from a range of soil types have been found to differ under laboratory conditions. However, there is lack of studies comparing NH3 emissions from different soil types under field conditions. The objective was to compare NH3 emissions from six different soil types under similar environmental conditions in the field following urea fertiliser application. The study was conducted on a lysimeter unit and NH3 emissions were measured, using wind tunnels, from six different soil types with varying soil characteristics following urea fertiliser application (80 kg N/ha). On average, 17.6% (% total N applied) was volatilised, and there was no significant difference in NH3 emissions across all soil types. Soil variables, including pH, cation exchange capacity and volumetric moisture, were not able to account for the variation in emissions. Further field studies are required to improve the urea-NH3 emission factor used for Ireland’s NH3 inventory.
  • A methodological framework to determine optimum durations for the construction of soil water characteristic curves using centrifugation

    Vero, Sara E.; Healy, Mark G.; Henry, Tiernan; Creamer, Rachel E.; Ibrahim, Tristan G.; Forrestal, Patrick J.; Richards, Karl G.; Fenton, Owen T.; Teagasc Walsh Fellowship Programme (Teagasc (Agriculture and Food Development Authority), Ireland, 30/12/2016)
    During laboratory assessment of the soil water characteristic curve (SWCC), determining equilibrium at various pressures is challenging. This study establishes a methodological framework to identify appropriate experimental duration at each pressure step for the construction of SWCCs via centrifugation. Three common temporal approaches to equilibrium – 24-, 48- and 72-h – are examined, for a grassland and arable soil. The framework highlights the differences in equilibrium duration between the two soils. For both soils, the 24-h treatment significantly overestimated saturation. For the arable site, no significant difference was observed between the 48- and 72-h treatments. Hence, a 48-h treatment was sufficient to determine ‘effective equilibrium’. For the grassland site, the 48- and 72-h treatments differed significantly. This highlights that a more prolonged duration is necessary for some soils to conclusively determine that effective equilibrium has been reached. This framework can be applied to other soils to determine the optimum centrifuge durations for SWCC construction.
  • Visual drainage assessment: A standardised visual soil assessment method for use in land drainage design in Ireland

    Tuohy, P.; Humphreys, James; Holden, N.M.; O'Loughlin, James; Reidy, B.; Fenton, Owen T. (Teagasc (Agriculture and Food Development Authority), Ireland, 20/08/2016)
    The implementation of site-specific land drainage system designs is usually disregarded by landowners in favour of locally established ‘standard practice’ land drainage designs. This is due to a number of factors such as a limited understanding of soil–water interactions, lack of facilities for the measurement of soil’s physical or hydrological parameters and perceived time wastage and high costs. Hence there is a need for a site-specific drainage system design methodology that does not rely on inaccessible, time-consuming and/or expensive measurements of soil physical or hydrological properties. This requires a standardised process for deciphering the drainage characteristics of a given soil in the field. As an initial step, a new visual soil assessment method, referred to as visual drainage assessment (VDA), is presented whereby an approximation of the permeability of specific soil horizons is made using seven indicators (water seepage, pan layers, texture, porosity, consistence, stone content and root development) to provide a basis for the design of a site-specific drainage system. Across six poorly drained sites (1.3 ha to 2.6 ha in size) in south-west Ireland a VDA-based design was compared with (i) an ideal design (utilising soil physical measurements to elucidate soil hydraulic parameters) and (ii) a standard design (0.8 m deep drains at a 15 m spacing) by model estimate of water table control and rainfall recharge/drain discharge capacity. The VDA method, unlike standard design equivalents, provided a good approximation of an ideal (from measured hydrological properties) design and prescribed an equivalent land drainage system in the field. Mean modelled rainfall recharge/drain discharge capacity for the VDA (13.3 mm/day) and ideal (12.0 mm/day) designs were significantly higher (P < 0.001, s.e. 1.42 mm/day) than for the standard designs (0.5 mm/day), when assuming a design minimum water table depth of 0.45 m.
  • The interactive effects of fertiliser nitrogen with dung and urine on nitrous oxide emissions in grassland

    Hyde, B.P.; Forrestal, Patrick J.; Jahangir, M.M.R.; Ryan, M.; Fanning, A.F.; Carton, Owen T.; Lanigan, Gary; Richards, Karl G.; Environmental Protection Agency; Department of Agriculture, Food and the Marine, Ireland; RSF 13S430; 11S138 (Teagasc (Agriculture and Food Development Authority), Ireland, 08/09/2016)
    Nitrous oxide (N2O) is an important and potent greenhouse gas (GHG). Although application of nitrogen (N) fertiliser is a feature of many grazing systems, limited data is available on N2O emissions in grassland as a result of the interaction between urine, dung and fertiliser N. A small plot study was conducted to identify the individual and interactive effects of calcium ammonium nitrate (CAN) fertiliser, dung and urine. Application of CAN with dung and urine significantly increased the mass of N2O-N emission. Importantly, the sum of N2O-N emitted from dung and CAN applied individually approximated the emission from dung and CAN fertiliser applied together, that is, an additive effect. However, in the case of urine and CAN applied together, the emission was more than double the sum of the emission from urine and CAN fertiliser applied individually, that is, a multiplicative effect. Nitrous oxide emissions from dung, urine and fertiliser N are typically derived individually and these individual emission estimates are aggregated to produce estimates of N2O emission. The presented findings have important implications for how individual emission factors are aggregated; they suggest that the multiplicative effect of the addition of CAN fertiliser to urine patches needs to be taken into account to refine the estimation of N2O emissions from grazing grasslands.
  • Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: insights into loss abatement in temperate grassland

    Forrestal, Patrick J.; Harty, M.; Carolan, R.; Lanigan, Gary; Watson, C.J.; Laughlin, R. J.; McNeill, G.; Chambers, B.J.; Richards, Karl G.; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine, Ireland; RSF 13S430; 11S138 (Wiley, 17/11/2015)
    Fertilizer nitrogen (N) contributes to ammonia (NH3) emissions, which European Union member states have committed to reduce. This study focused on evaluating NH3-N loss from a suite of N fertilizers over multiple applications, and gained insights into the temporal and seasonal patterns of NH3-N loss from urea in Irish temperate grassland using wind tunnels. The fertilizers evaluated were calcium ammonium nitrate (CAN), urea and urea with the N stabilizers N-(n-butyl) thiophosphoric triamide (NBPT), dicyandiamide (DCD), DCD+NBPT and a maleic and itaconic acid polymer (MIP). 200 (and 400 for urea only) kg N/ha/yr was applied in five equal applications over the growing season at two grassland sites (one for MIP). Mean NH3-N losses from CAN were 85% lower than urea and had highly variable loss (range 45% points). The effect of DCD on NH3 emissions was variable. MIP did not decrease NH3-N loss, but NBPT caused a 78.5% reduction and, when combined with DCD, a 74% reduction compared with urea alone. Mean spring and summer losses from urea were similar, although spring losses were more variable with both the lowest and highest losses. Maximum NH3-N loss usually occurred on the second day after application. These data highlight the potential of stabilized urea to alter urea NH3-N loss outcomes in temperate grassland, the need for caution when using season as a loss risk guide and that urea hydrolysis in temperate grassland initiates quickly. Micrometeorological measurements focused specifically on urea are needed to determine absolute NH3-N loss levels in Irish temperate grassland.
  • Temperate Grassland Yields and Nitrogen Uptake Are Influenced by Fertilizer Nitrogen Source

    Harty, Mary A.; Forrestal, Patrick J.; Carolan, Rachael; Watson, Catherine J.; Hennessy, Deirdre; Lanigan, Gary; Wall, David P.; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; Department of Agriculture and Rural Development, Northern Ireland; RSF10-/RD/SC/716; RSF11S138 (American Society of Agronomy, 25/01/2017)
    In temperate grasslands, N source influences greenhouse gas emissions. Nitrification and urea hydrolysis inhibitors can reduce these losses. The objective of this study was to evaluate the impact of N source, urease inhibitors, and nitrification inhibitors on temperate grassland yields and N uptake. Experiments were conducted at three locations over 2 years (6 site-years) on the island of Ireland, covering a range of soils and climatic conditions. Results showed that calcium ammonium nitrate (CAN), urea+N-(n-butyl) thiophosphoric triamide (NBPT), urea+NBPT+dicyandiamide (DCD), and urea had equal annual dry matter yield. Urea+DCD had lower dry matter yield than CAN for 3 site-years. Calcium ammonium nitrate and urea+NBPT consistently had the same N uptake, urea+DCD had lower N uptake than CAN in 4 of 6 site-years, urea had lower N uptake than CAN in 2 site-years, and urea+NBPT+DCD had lower N uptake than CAN in 1 site-year. Urea+NBPT is a cost-effective alternative to CAN, which is consistently equal in terms of yield and N uptake in temperate grassland.

View more