• Assessing the role of artificially drained agricultural land for climate change mitigation in Ireland

      Paul, Carsten; Fealy, Reamonn; Fenton, Owen; Lanigan, Gary; O’Sullivan, Lilian; Schulte, Rogier P.; Irish Dairy Research Fund; Teagasc Greenhouse Gas Working Group; Department of Agriculture, Food and the Marine (Elsevier, 2017-12-19)
      In 2014 temperate zone emission factor revisions were published in the IPCC Wetlands Supplement. Default values for direct CO2 emissions of artificially drained organic soils were increased by a factor of 1.6 for cropland sites and by factors ranging from 14 to 24 for grassland sites. This highlights the role of drained organic soils as emission hotspots and makes their rewetting more attractive as climate change mitigation measures. Drainage emissions of humic soils are lower on a per hectare basis and not covered by IPCC default values. However, drainage of great areas can turn them into nationally relevant emission sources. National policy making that recognizes the importance of preserving organic and humic soils’ carbon stock requires data that is not readily available. Taking Ireland as a case study, this article demonstrates how a dataset of policy relevant information can be generated. Total area of histic and humic soils drained for agriculture, resulting greenhouse gas emissions and climate change mitigation potential were assessed. For emissions from histic soils, calculations were based on IPCC emission factors, for humic soils, a modified version of the ECOSSE model was used. Results indicated 370,000 ha of histic and 426,000 ha of humic soils under drained agricultural land use in Ireland (8% and 9% of total farmed area). Calculated annual drainage emissions were 8.7 Tg CO2e from histic and 1.8 Tg CO2e from humic soils (equal to 56% of Ireland’s agricultural emissions in 2014, excluding emissions from land use). If half the area of drained histic soils was rewetted, annual saving would amount to 3.2 Tg CO2e. If on half of the deep drained, nutrient rich grasslands drainage spacing was decreased to control the average water table at −25 cm or higher, annual savings would amount to 0.4 Tg CO2e.
    • Assessing the role of artificially drained agricultural land for climate change mitigation in Ireland

      Paul, Carsten; Fealy, Reamonn; Fenton, Owen; Lanigan, Gary; O'Sullivan, Lilian; Schulte, Rogier P.; Irish Dairy Research Fund; Teagasc Greenhouse Gas Working Group; Department of Agriculture, Food and the Marine (Elsevier, 2017-12-19)
      In 2014 temperate zone emission factor revisions were published in the IPCC Wetlands Supplement. Default values for direct CO2 emissions of artificially drained organic soils were increased by a factor of 1.6 for cropland sites and by factors ranging from 14 to 24 for grassland sites. This highlights the role of drained organic soils as emission hotspots and makes their rewetting more attractive as climate change mitigation measures. Drainage emissions of humic soils are lower on a per hectare basis and not covered by IPCC default values. However, drainage of great areas can turn them into nationally relevant emission sources. National policy making that recognizes the importance of preserving organic and humic soils’ carbon stock requires data that is not readily available. Taking Ireland as a case study, this article demonstrates how a dataset of policy relevant information can be generated. Total area of histic and humic soils drained for agriculture, resulting greenhouse gas emissions and climate change mitigation potential were assessed. For emissions from histic soils, calculations were based on IPCC emission factors, for humic soils, a modified version of the ECOSSE model was used. Results indicated 370,000 ha of histic and 426,000 ha of humic soils under drained agricultural land use in Ireland (8% and 9% of total farmed area). Calculated annual drainage emissions were 8.7 Tg CO2e from histic and 1.8 Tg CO2e from humic soils (equal to 56% of Ireland’s agricultural emissions in 2014, excluding emissions from land use). If half the area of drained histic soils was rewetted, annual saving would amount to 3.2 Tg CO2e. If on half of the deep drained, nutrient rich grasslands drainage spacing was decreased to control the average water table at −25 cm or higher, annual savings would amount to 0.4 Tg CO2e.
    • Functional Land Management for managing soil functions: A case-study of the trade-off between primary productivity and carbon storage in response to the intervention of drainage systems in Ireland

      O'Sullivan, Lilian; Creamer, Rachel E.; Fealy, Reamonn; Lanigan, Gary; Simo, Iolanda; Fenton, Owen; Carfrae, J.; Schulte, Rogier; Department of Agriculture, Food and the Marine (Elsevier, 2015-09-30)
      Globally, there is growing demand for increased agricultural outputs. At the same time, the agricultural industry is expected to meet increasingly stringent environmental targets. Thus, there is an urgent pressure on the soil resource to deliver multiple functions simultaneously. The Functional Land Management framework (Schulte et al., 2014) is a conceptual tool designed to support policy making to manage soil functions to meet these multiple demands. This paper provides a first example of a practical application of the Functional Land Management concept relevant to policy stakeholders. In this study we examine the trade-offs, between the soil functions ‘primary productivity’ and ‘carbon cycling and storage’, in response to the intervention of land drainage systems applied to ‘imperfectly’ and ‘poorly’ draining managed grasslands in Ireland. These trade-offs are explored as a function of the nominal price of ‘Certified Emission Reductions’ or ‘carbon credits’. Also, these trade-offs are characterised spatially using ArcGIS to account for spatial variability in the supply of soil functions.To manage soil functions, it is essential to understand how individual soil functions are prioritised by those that are responsible for the supply of soil functions – generally farmers and foresters, and those who frame demand for soil functions – policy makers. Here, in relation to these two soil functions, a gap exists in relation to this prioritisation between these two stakeholder groups. Currently, the prioritisation and incentivisation of these competing soil functions is primarily a function of CO2 price. At current CO2 prices, the agronomic benefits outweigh the monetised environmental costs. The value of CO2 loss would only exceed productivity gains at either higher CO2 prices or at a reduced discount period rate. Finally, this study shows large geographic variation in the environmental cost: agronomic benefit ratio. Therein, the Functional Land Management framework can support the development of policies that are more tailored to contrasting biophysical environments and are therefore more effective than ‘blanket approaches’ allowing more specific and effective prioritisation of contrasting soil functions.
    • The impact of cattle dung pats on earthworm distribution in grazed pastures

      Bacher, M. G.; Fenton, Owen; Bondi, G.; Creamer, Rachel; Karmarkar, M.; Schmidt, O.; Department of Agriculture, Food and the Marine; 13/S/468 (Springer Science and Business Media LLC, 2018-12-19)
      Background Grazed grassland management regimes can have various effects on soil fauna. For example, effects on earthworms can be negative through compaction induced by grazing animals, or positive mediated by increases in sward productivity and cattle dung pats providing a food source. Knowledge gaps exist in relation to the behaviour of different earthworm species i.e. their movement towards and aggregation under dung pats, the legacy effects of pats and the spatial area of recruitment. The present study addressed these knowledge gaps in field experiments, over 2 years, using natural and simulated dung pats on two permanent, intensively grazed pastures in Ireland. Results Dung pats strongly affected spatial earthworm distribution, with up to four times more earthworms aggregating beneath pats, than in the control locations away from pats. In these earthworm communities comprising 11 species, temporally different aggregation and dispersal patterns were observed, including absence of individual species from control locations, but no clear successional responses. Epigeic species in general, but also certain species of the anecic and endogeic groups were aggregating under dung. Sampling after complete dung pat disappearance (27 weeks after application) suggested an absence of a dung pat legacy effect on earthworm communities. Based on species distributions, the maximum size of the recruitment area from which earthworms moved to pats was estimated to be 3.8 m2 per dung pat. Since actual grazing over 6 weeks would result in the deposition of about 300 dung pats per ha, it is estimated that a surface area of 1140 m2 or about 11% of the total grazing area can be influenced by dung pats in a given grazing period. Conclusions This study showed that the presence of dung pats in pastures creates temporary hot spots in spatial earthworm species distribution, which changes over time. The findings highlight the importance of considering dung pats, temporally and spatially, when sampling earthworms in grazed pastures. Published comparisons of grazed and cut grasslands probably reached incorrect conclusions by ignoring or deliberately avoiding dung pats. Furthermore, the observed intense aggregation of earthworms beneath dung pats suggests that earthworm functions need to be assessed separately at these hot spots.
    • Nitrogen fertiliser interactions with urine deposit affect nitrous oxide emissions from grazed grasslands

      Maire, J.; Krol, Dominika; Pasquier, D.; Cowan, N.; Skiba, U.; Rees, R.M.; Reay, D.; Lanigan, Gary; Richards, Karl J.; Teagasc Walsh Fellowship Programme; et al. (Elsevier, 2019-12-06)
      Cattle excreta deposited on grazed pastures are responsible for one fifth of the global anthropogenic nitrous oxide (N2O) emissions. One of the key nitrogen (N) sources is urine deposited from grazing animals, which contributes to very large N loadings within small areas. The main objective of this plot study was to establish whether the application of N fertiliser and urine deposit from dairy cows synergistically interacts and thereby increases N2O emissions, and how such interaction is influenced by the timing of application. The combined application of fertiliser (calcium ammonium nitrate) and urine significantly increased the cumulative N2O emissions as well as the N2O emission factor (EF) from 0.35 to 0.74 % in spring and from 0.26 to 0.52 % in summer. By contrast, EFs were lower when only fertiliser (0.31 % in spring, 0.07 % in summer) or urine was applied (0.33 % in spring, 0.28 % in summer). In autumn, N2O emissions were larger than in other seasons and the emissions from the combined application were not statistically different to those from either the separately applied urine or N fertiliser (EF ranging from 0.72 to 0.83, p-value < 0.05). The absence of significant synergistic effect could be explained by weather conditions, particularly rainfall during the three days prior to and after application in autumn. This study implies that the interactive effects of N fertilisation and urine deposit, as well as the timing of the application on N2O emission need to be taken into account in greenhouse gas emission inventories.
    • Predicted distribution of High Nature Value farmland in the Republic of Ireland

      Matin, Shafique; Sullivan, C. A.; O hUallachain, Daire; Meredith, David; Moran, James; Finn, John; green, stuart; Department of Agriculture, Food and the Marine; 11/S/108 (Taylor & Francis, 2016-08-31)
      High Nature Value (HNV) farmland is typically characterised by low-intensity farming associated with high biodiversity and species of conservation concern. Mapping the occurrence and distribution of such farmland are useful for appropriate targeting of conservation measures and supporting associated rural communities. We mapped the likely distribution of HNV farmland in the Republic of Ireland using a linear regression model incorporating established European indicators, adapted for Ireland and weightings based on expert opinion. The indicators used were semi-natural habitat cover, stocking density, hedgerow density, river and stream density and soil diversity, with highest weightings placed on the first two indicators (40% and 30%, respectively). The map provides information on the likely occurrence and distribution of HNV farmland in each electoral division as a reference point for future monitoring of the distribution of HNV farmland in the Republic of Ireland in order to assist with planning and policy development for the rural environment.
    • A review of nitrous oxide mitigation by farm nitrogen management in temperate grassland-based agriculture

      Li, Dejun; Watson, C. J.; Yan, Ming Jia; Lalor, Stanley T. J.; Rafique, Rashid; Hyde, Bernard; Lanigan, Gary; Richards, Karl G.; Holden, Nicholas M.; Humphreys, James; et al. (Elsevier, 20/07/2013)
      Nitrous oxide (N2O) emission from grassland-based agriculture is an important source of atmospheric N2O. It is hence crucial to explore various solutions including farm nitrogen (N) management to mitigate N2O emissions without sacrificing farm profitability and food supply. This paper reviews major N management practices to lower N2O emission from grassland-based agriculture. Restricted grazing by reducing grazing time is an effective way to decrease N2O emissions from excreta patches. Balancing the protein-to-energy ratios in the diets of ruminants can also decrease N2O emissions from excreta patches. Among the managements of synthetic fertilizer N application, only adjusting fertilizer N rate and slow-released fertilizers are proven to be effective in lowering N2O emissions. Use of bedding materials may increase N2O emissions from animal houses. Manure storage as slurry, manipulating slurry pH to values lower than 6 and storage as solid manure under anaerobic conditions help to reduce N2O emissions during manure storage stage. For manure land application, N2O emissions can be mitigated by reducing manure N inputs to levels that satisfy grass needs. Use of nitrification inhibitors can substantially lower N2O emissions associated with applications of fertilizers and manures and from urine patches. N2O emissions from legume based grasslands are generally lower than fertilizer-based systems. In conclusion, effective measures should be taken at each step during N flow or combined options should be used in order to mitigate N2O emission at the farm level.