• Ammonia emissions from cattle dung, urine and urine with dicyandiamide in a temperate grassland

      Fischer, K.; Burchill, William; Lanigan, Gary; Kaupenjohann, M.; Chambers, B. J.; Richards, Karl G.; Forrestal, Patrick J.; Department of Agriculture, Food and the Marine, Ireland; RSF13S430; 11S138 (Wiley, 03/09/2015)
      Deposition of urine and dung in pasture-based livestock production systems is a major source of ammonia (NH3) volatilization, contributing to the eutrophication and acidification of water bodies and to indirect nitrous oxide emissions. The objectives of this study were to (i) measure NH3 volatilization from dung and urine in three seasons, (ii) test the effect of spiking urine with the nitrification inhibitor dicyandiamide (DCD) on NH3 volatilization and (iii) generate NH3 emission factors (EFs) for dung, urine and urine + DCD in temperate maritime grassland. Accordingly, simulated dung, urine and urine spiked with DCD (at 30 kg DCD/ha equivalent rate) patches were applied to temperate grassland. Treatments were applied three times in 2014 with one measurement of NH3 loss being completed in spring, summer and autumn. The NH3-N EF was highest in spring, which was most likely due to the near absence of rainfall throughout the duration of loss measurement. The EFs across the experiments ranged between 2.8 and 5.3% (mean 3.9%) for dung, 8.7 and 14.9% (mean 11.2%) for urine and 9.5 and 19.5% (mean 12.9%) for urine + DCD, showing that ammonia loss from dung was significantly lower than from urine. Aggregating country-specific emission data such as those from the current experiment with data from climatically similar regions (perhaps in a weighted manner which accounts for the relative abundance of certain environmental conditions) along with modelling is a potentially resourceefficient approach for refining national ammonia inventories.
    • Ammonia emissions from cattle dung, urine and urine with dicyandiamide in a temperate grassland

      Fischer, K.; Burchill, William; Lanigan, Gary; Kaupenjohann, M.; Chambers, B. J.; Richards, Karl G.; Forrestal, Patrick J.; Department of Agriculture, Food and the Marine, Ireland (Wiley, 03/09/2015)
      Deposition of urine and dung in pasture-based livestock production systems is a major source of ammonia (NH3) volatilization, contributing to the eutrophication and acidification of water bodies and to indirect nitrous oxide emissions. The objectives of this study were to (i) measure NH3 volatilization from dung and urine in three seasons, (ii) test the effect of spiking urine with the nitrification inhibitor dicyandiamide (DCD) on NH3 volatilization and (iii) generate NH3 emission factors (EFs) for dung, urine and urine + DCD in temperate maritime grassland. Accordingly, simulated dung, urine and urine spiked with DCD (at 30 kg DCD/ha equivalent rate) patches were applied to temperate grassland. Treatments were applied three times in 2014 with one measurement of NH3 loss being completed in spring, summer and autumn. The NH3-N EF was highest in spring, which was most likely due to the near absence of rainfall throughout the duration of loss measurement. The EFs across the experiments ranged between 2.8 and 5.3% (mean 3.9%) for dung, 8.7 and 14.9% (mean 11.2%) for urine and 9.5 and 19.5% (mean 12.9%) for urine + DCD, showing that ammonia loss from dung was significantly lower than from urine. Aggregating country-specific emission data such as those from the current experiment with data from climatically similar regions (perhaps in a weighted manner which accounts for the relative abundance of certain environmental conditions) along with modelling is a potentially resource-efficient approach for refining national ammonia inventories.
    • Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: insights into loss abatement in temperate grassland

      Forrestal, Patrick J.; Harty, Mary A.; Carolan, Rachael; Lanigan, Gary; Watson, C. J.; Laughlin, Ronald J.; McNeill, Gavin; Chambers, B. J.; Richards, Karl G.; Teagasc Walsh Fellowship Programme; et al. (Wiley, 17/11/2015)
      Fertilizer nitrogen (N) contributes to ammonia (NH3) emissions, which European Union member states have committed to reduce. This study focused on evaluating NH3-N loss from a suite of N fertilizers over multiple applications, and gained insights into the temporal and seasonal patterns of NH3-N loss from urea in Irish temperate grassland using wind tunnels. The fertilizers evaluated were calcium ammonium nitrate (CAN), urea and urea with the N stabilizers N-(n-butyl) thiophosphoric triamide (NBPT), dicyandiamide (DCD), DCD+NBPT and a maleic and itaconic acid polymer (MIP). 200 (and 400 for urea only) kg N/ha/yr was applied in five equal applications over the growing season at two grassland sites (one for MIP). Mean NH3-N losses from CAN were 85% lower than urea and had highly variable loss (range 45% points). The effect of DCD on NH3 emissions was variable. MIP did not decrease NH3-N loss, but NBPT caused a 78.5% reduction and, when combined with DCD, a 74% reduction compared with urea alone. Mean spring and summer losses from urea were similar, although spring losses were more variable with both the lowest and highest losses. Maximum NH3-N loss usually occurred on the second day after application. These data highlight the potential of stabilized urea to alter urea NH3-N loss outcomes in temperate grassland, the need for caution when using season as a loss risk guide and that urea hydrolysis in temperate grassland initiates quickly. Micrometeorological measurements focused specifically on urea are needed to determine absolute NH3-N loss levels in Irish temperate grassland.
    • Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: insights into loss abatement in temperate grassland

      Forrestal, Patrick J.; Harty, Mary A.; Carolan, Rachael; Lanigan, Gary; Watson, C. J.; Laughlin, Ronald J.; McNeill, Gavin; Chambers, B. J.; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; et al. (Wiley, 17/11/2015)
      Fertilizer nitrogen (N) contributes to ammonia (NH3) emissions, which European Union member states have committed to reduce. This study focused on evaluating NH3-N loss from a suite of N fertilizers over multiple applications, and gained insights into the temporal and seasonal patterns of NH3-N loss from urea in Irish temperate grassland using wind tunnels. The fertilizers evaluated were calcium ammonium nitrate (CAN), urea and urea with the N stabilizers N-(n-butyl) thiophosphoric triamide (NBPT), dicyandiamide (DCD), DCD+NBPT and a maleic and itaconic acid polymer (MIP). 200 (and 400 for urea only) kg N/ha/yr was applied in five equal applications over the growing season at two grassland sites (one for MIP). Mean NH3-N losses from CAN were 85% lower than urea and had highly variable loss (range 45% points). The effect of DCD on NH3 emissions was variable. MIP did not decrease NH3-N loss, but NBPT caused a 78.5% reduction and, when combined with DCD, a 74% reduction compared with urea alone. Mean spring and summer losses from urea were similar, although spring losses were more variable with both the lowest and highest losses. Maximum NH3-N loss usually occurred on the second day after application. These data highlight the potential of stabilized urea to alter urea NH3-N loss outcomes in temperate grassland, the need for caution when using season as a loss risk guide and that urea hydrolysis in temperate grassland initiates quickly. Micrometeorological measurements focused specifically on urea are needed to determine absolute NH3-N loss levels in Irish temperate grassland.
    • Application of Dexter’s soil physical quality index: an Irish case study

      Fenton, Owen; Vero, Sara E.; Schulte, Rogier P.; O'Sullivan, Lilian; Bondi, G.; Creamer, Rachel E.; Department of Agriculture, Food and the Marine, Ireland; 6582 (Teagasc (Agriculture and Food Development Authority), Ireland, 26/08/2017)
      Historically, due to a lack of measured soil physical data, the quality of Irish soils was relatively unknown. Herein, we investigate the physical quality of the national representative profiles of Co. Waterford. To do this, the soil physical quality (SPQ) S-Index, as described by Dexter (2004a,b,c) using the S-theory (which seeks the inflection point of a soil water retention curve [SWRC]), is used. This can be determined using simple (S-Indirect) or complex (S-Direct) soil physical data streams. Both are achievable using existing data for the County Waterford profiles, but until now, the suitability of this S-Index for Irish soils has never been tested. Indirect-S provides a generic characterisation of SPQ for a particular soil horizon, using simplified and modelled information (e.g. texture and SWRC derived from pedo-transfer functions), whereas Direct-S provides more complex site-specific information (e.g. texture and SWRC measured in the laboratory), which relates to properties measured for that exact soil horizon. Results showed a significant correlation between S-Indirect (Si) and S-Direct (Sd). Therefore, the S-Index can be used in Irish soils and presents opportunities for the use of Si at the national scale. Outlier horizons contained >6% organic carbon (OC) and bulk density (Bd) values <1 g/cm3 and were not suitable for Si estimation. In addition, the S-Index did not perform well on excessively drained soils. Overall correlations of Si. with Bd and of Si. with OC% for the dataset were detected. Future work should extend this approach to the national scale dataset in the Irish Soil Information System.
    • Can the agronomic performance of urea equal calcium ammonium nitrate across nitrogen rates in temperate grassland?

      Forrestal, Patrick J.; Harty, Mary A.; Carolan, Rachael; Watson, C. J.; Lanigan, Gary; Wall, David; Hennessy, Deirdre; Richards, Karl G.; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine, Ireland; et al. (Wiley, 23/03/2017)
      In temperate grassland, urea has been shown to have lower nitrous oxide emissions compared to ammonium nitrate-based fertilizer and is less expensive. However, nitrogen (N) loss via ammonia volatilization from urea raises questions regarding yield performance and efficiency. This study compares the yield and N offtake of grass fertilized with urea, calcium ammonium nitrate (CAN) and urea treated with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) at six site-years. Five annual fertilizer N rates (100–500 kg N/ha) were applied in five equal splits of 20–100 kg N/ha during the growing season. On average, urea produced slightly better yields than CAN in spring (103.5% of CAN yield) and slightly poorer yields in summer (98.4% of CAN yield). There was no significant difference in annual grass yield between urea, CAN and urea + NBPT. Urea had the lowest cost per tonne of DM grass yield produced. However, the urea treatment had lower N offtake than CAN and this difference was more pronounced as the N rate increased. There was no difference in N offtake between urea + NBPT and CAN. While this study shows that urea produced yields comparable to CAN, urea apparent fertilizer N recovery (AFNR) tends to be lower. Urea selection in place of CAN will increase national ammonia emissions which is problematic for countries with targets to reduce ammonia emissions. Promisingly, NBPT allows the agronomic performance of urea to consistently equal CAN across N rates by addressing the ammonia loss limitations of urea.
    • Carbon and nitrogen dynamics and greenhouse gas emissions in constructed wetlands treating wastewater: a review

      Department of Agriculture, Food and the Marine; Jahangir, Mohammad M. R.; Richards, Karl G.; Healy, Mark G.; Gill, L.; Muller, Christoph; Johnston, Paul; Fenton, Owen; Irish Research Council; Department of Agriculture, Food and the Marine, Ireland (European Geosciences Union, 18/01/2016)
      The removal efficiency of carbon (C) and nitrogen (N) in constructed wetlands (CWs) is very inconsistent and frequently does not reveal whether the removal processes are due to physical attenuation or whether the different species have been transformed to other reactive forms. Previous research on nutrient removal in CWs did not consider the dynamics of pollution swapping (the increase of one pollutant as a result of a measure introduced to reduce a different pollutant) driven by transformational processes within and around the system. This paper aims to address this knowledge gap by reviewing the biogeochemical dynamics and fate of C and N in CWs and their potential impact on the environment, and by presenting novel ways in which these knowledge gaps may be eliminated. Nutrient removal in CWs varies with the type of CW, vegetation, climate, season, geographical region, and management practices. Horizontal flow CWs tend to have good nitrate (NO3−) removal, as they provide good conditions for denitrification, but cannot remove ammonium (NH4+) due to limited ability to nitrify NH4+. Vertical flow CWs have good NH4+ removal, but their denitrification ability is low. Surface flow CWs decrease nitrous oxide (N2O) emissions but increase methane (CH4) emissions; subsurface flow CWs increase N2O and carbon dioxide (CO2) emissions, but decrease CH4 emissions. Mixed species of vegetation perform better than monocultures in increasing C and N removal and decreasing greenhouse gas (GHG) emissions, but empirical evidence is still scarce. Lower hydraulic loadings with higher hydraulic retention times enhance nutrient removal, but more empirical evidence is required to determine an optimum design. A conceptual model highlighting the current state of knowledge is presented and experimental work that should be undertaken to address knowledge gaps across CWs, vegetation and wastewater types, hydraulic loading rates and regimes, and retention times, is suggested. We recommend that further research on process-based C and N removal and on the balancing of end products into reactive and benign forms is critical to the assessment of the environmental performance of CWs.
    • Carbon cycling in temperate grassland under elevated temperature

      Jansen-Willems, Anne B.; Lanigan, Gary; Grunhage, Ludger; Muller, Christoph; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; RSF 10/SC/716 (Wiley, 01/11/2016)
      An increase in mean soil surface temperature has been observed over the last century, and it is predicted to further increase in the future. The effect of increased temperature on ecosystem carbon fluxes in a permanent temperate grassland was studied in a long-term (6 years) field experiment, using multiple temperature increments induced by IR lamps. Ecosystem respiration (R-eco) and net ecosystem exchange (NEE) were measured and modeled by a modified Lloyd and Taylor model including a soil moisture component for R-eco (average R2 of 0.78) and inclusion of a photosynthetic component based on temperature and radiation for NEE (R2 = 0.65). Modeled NEE values ranged between 2.3 and 5.3 kg CO2 m−2 year−1, depending on treatment. An increase of 2 or 3°C led to increased carbon losses, lowering the carbon storage potential by around 4 tonnes of C ha−1 year−1. The majority of significant NEE differences were found during night-time compared to daytime. This suggests that during daytime the increased respiration could be offset by an increase in photosynthetic uptake. This was also supported by differences in δ13C and δ18O, indicating prolonged increased photosynthetic activity associated with the higher temperature treatments. However, this increase in photosynthesis was insufficient to counteract the 24 h increase in respiration, explaining the higher CO2 emissions due to elevated temperature.
    • Confirmation of co-denitrification in grazed grassland

      Selbie, Diana R.; Lanigan, Gary; Laughlin, Ronald J.; Di, H.J.; Moir, James L.; Cameron, K.C.; Clough, Timothy J.; Watson, C. J.; Grant, Jim; Somers, Cathal; et al. (Nature Publishing Group, 30/11/2015)
      Pasture-based livestock systems are often associated with losses of reactive forms of nitrogen (N) to the environment. Research has focused on losses to air and water due to the health, economic and environmental impacts of reactive N. Di-nitrogen (N2) emissions are still poorly characterized, both in terms of the processes involved and their magnitude, due to financial and methodological constraints. Relatively few studies have focused on quantifying N2 losses in vivo and fewer still have examined the relative contribution of the different N2 emission processes, particularly in grazed pastures. We used a combination of a high 15N isotopic enrichment of applied N with a high precision of determination of 15N isotopic enrichment by isotope-ratio mass spectrometry to measure N2 emissions in the field. We report that 55.8 g N m−2 (95%, CI 38 to 77 g m−2) was emitted as N2 by the process of co-denitrification in pastoral soils over 123 days following urine deposition (100 g N m−2), compared to only 1.1 g N m−2 (0.4 to 2.8 g m−2) from denitrification. This study provides strong evidence for co-denitrification as a major N2 production pathway, which has significant implications for understanding the N budgets of pastoral ecosystems.
    • Denitrification and indirect N2O emissions in groundwater: Hydrologic and biogeochemical influences

      Jahangir, Mohammad M. R.; Johnston, Paul; Barrett, Maria; Khalil, Mohammed I.; Groffman, P.M.; Boeckx, P.; Fenton, Owen; Murphy, John; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; et al. (Elsevier, 08/07/2013)
      Identification of specific landscape areas with high and low groundwater denitrification potential is critical for improved management of agricultural nitrogen (N) export to ground and surface waters and indirect nitrous oxide (N2O) emissions. Denitrification products together with concurrent hydrogeochemical properties were analysed over two years at three depths at two low (L) and two high (H) permeability agricultural sites in Ireland. Mean N2O–N at H sites were significantly higher than L sites, and decreased with depth. Conversely, excess N2–N were significantly higher at L sites than H sites and did not vary with depth. Denitrification was a significant pathway of nitrate (NO3−–N) reduction at L sites but not at H sites, reducing 46–77% and 4–8% of delivered N with resulting mean NO3−–N concentrations of 1–4 and 12–15 mg N L− 1 at L and H sites, respectively. Mean N2O–N emission factors (EF5g) were higher than the most recent Intergovernmental Panel on Climate Change (IPCC, 2006) default value and more similar to the older IPCC (1997) values. Recharge during winter increased N2O but decreased excess dinitrogen (excess N2–N) at both sites, probably due to increased dissolved oxygen (DO) coupled with low groundwater temperatures. Denitrifier functional genes were similar at all sites and depths. Data showed that highly favourable conditions prevailed for denitrification to occur — multiple electron donors, low redox potential (Eh < 100 mV), low DO (< 2 mg L− 1), low permeability (ks < 0.005 m·d− 1) and a shallow unsaturated zone (< 2 m). Quantification of excess N2–N in groundwater helps to close N balances at the local, regional and global scales.
    • Denitrification potential in subsoils: A mechanism to reduce nitrate leaching to groundwater

      Jahangir, Mohammad M. R.; Khalil, Mohammed I.; Johnston, Paul; Cardenas, L. M.; Hatch, D.J.; Butler, Mark; Barrett, Maria; O'Flaherty, Vincent; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; et al. (Elsevier, 28/05/2011)
      Understanding subsurface denitrification potential will give greater insights into landscape nitrate (NO3−) delivery to groundwater and indirect nitrous oxide (N2O) emissions to the atmosphere. Potential denitrification rates and ratios of N2O/(N2O + N2) were investigated in intact soil cores collected from 0–0.10, 0.45–0.55 and 1.20–1.30 m depths representing A, B and C soil horizons, respectively from three randomly selected locations within a single intensively managed grazed grassland plot in south eastern Ireland. The soil was moderately well drained with textures ranging from loam to clay loam (gleysol) in the A to C horizon. An experiment was carried out by amending soils from each horizon with (i) 90 mg NO3−–N as KNO3, (ii) 90 mg NO3−–N + 150 mg glucose-C, (iii) 90 mg NO3−–N + 150 mg DOC (dissolved organic carbon, prepared using top soil of intensively managed grassland) kg−1 dry soil. An automated laboratory incubation system was used to measure simultaneously N2O and N2, at 15 ◦C, with the moisture content raised by 3% (by weight) above the moisture content at field capacity (FC), giving a water-filled pore space (WFPS) of 80, 85 and 88% in the A, B and C horizons, respectively. There was a significant effect (p < 0.01) of soil horizon and added carbon on cumulative N2O emissions. N2O emissions were higher from the A than the B and C horizons and were significantly lower from soils that received only nitrate than soils that received NO3 − + either of the C sources. The two C sources gave similar N2O emissions. The N2 fluxes differed significantly (p < 0.05) only between the A and C horizons. During a 17-day incubation, total denitrification losses of the added N decreased significantly (p < 0.01) with soil depth and were increased by the addition of either C source. The fraction of the added N lost from each horizon were A: 25, 61, 45%; B: 12, 29, 28.5% and C: 4, 20, 18% for nitrate, nitrate + glucose-C and nitrate + DOC, respectively. The ratios of N2O to N2O + N2 differed significantly (p < 0.05) only between soil horizons, being higher in the A (0.58–0.75) than in the deeper horizons (0.10–0.36 in B and 0.06–0.24 in C), clearly indicating the potential of subsoils for a more complete reduction of N2O to N2. Stepwise multiple regression analysis revealed that N2O flux increased with total organic C and total N but decreased with NO3 −–N which together explained 88% of the variance (p < 0.001). The N2 flux was best explained (R2 = 0.45, p < 0.01) by soluble organic nitrogen (SON) (positive) and with NO3−–N (negative). Stepwise multiple regression revealed a best fit for total denitrification rates which were positive for total C and negative for NO3 −–N with the determination coefficient of 0.76 (p < 0.001). The results suggest that without C addition, potential denitrification rate below the root zone was low. Therefore, the added C sources in subsoils can satisfactorily increase nitrate depletion via denitrification where the mole fraction of N2O would be further reduced to N2 during diffusional transport through the soil profile to the atmosphere and/or to groundwater. Subsoil denitrification can be accelerated either through introducing C directly into permeable reactive barriers and/or indirectly, by irrigating dirty water and manipulating agricultural plant composition and diversity.
    • Determination and Occurrence of Phenoxyacetic Acid Herbicides and Their Transformation Products in Groundwater Using Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry

      McManus, Sarah-Louise; Moloney, Mary; Richards, Karl G.; Coxon, Catherine E.; Danaher, Martin; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine, Ireland (MDPI AG., Basel, Switzerland, 10/12/2014)
      A sensitive method was developed and validated for ten phenoxyacetic acid herbicides, six of their main transformation products (TPs) and two benzonitrile TPs in groundwater. The parent compounds mecoprop, mecoprop-p, 2,4-D, dicamba, MCPA, triclopyr, fluroxypr, bromoxynil, bentazone, and 2,3,6-trichlorobenzoic acid (TBA) are included and a selection of their main TPs: phenoxyacetic acid (PAC), 2,4,5-trichloro-phenol (TCP), 4-chloro-2-methylphenol (4C2MP), 2,4-dichlorophenol (DCP), 3,5,6-trichloro-2-pyridinol (T2P), and 3,5-dibromo-4-hydroxybenzoic acid (BrAC), as well as the dichlobenil TPs 2,6-dichlorobenzamide (BAM) and 3,5-dichlorobenzoic acid (DBA) which have never before been determined in Irish groundwater. Water samples were analysed using an efficient ultra-high performance liquid chromatography (UHPLC) method in an 11.9 min separation time prior to detection by tandem mass spectrometry (MS/MS). The limit of detection (LOD) of the method ranged between 0.00008 and 0.0047 µg·L−1 for the 18 analytes. All compounds could be detected below the permitted limits of 0.1 µg·L−1 allowed in the European Union (EU) drinking water legislation [1]. The method was validated according to EU protocols laid out in SANCO/10232/2006 with recoveries ranging between 71% and 118% at the spiked concentration level of 0.06 µg·L−1. The method was successfully applied to 42 groundwater samples collected across several locations in Ireland in March 2012 to reveal that the TPs PAC and 4C2MP were detected just as often as their parent active ingredients (a.i.) in groundwater.
    • The ecology of the European badger (Meles meles) in Ireland: a review

      Byrne, Andrew W.; Sleeman, D. Paddy; O'Keeffe, James; Davenport, John; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme (Royal Irish Academy, 30/04/2012)
      The badger is an ecologically and economically important species. Detailed knowledge of aspects of the ecology of this animal in Ireland has only emerged through research over recent decades. Here, we review what is known about the species' Irish populations and compare these findings with populations in Britain and Europe. Like populations elsewhere, setts are preferentially constructed on south or southeast facing sloping ground in well-drained soil types. Unlike in Britain, Irish badger main setts are less complex and most commonly found in hedgerows. Badgers utilise many habitat types, but greater badger densities have been associated with landscapes with high proportions of pasture and broadleaf woodlands. Badgers in Ireland tend to have seasonally varied diets, with less dependence on earthworms than some other populations in northwest Europe. Recent research suggests that females exhibit later onset and timing of reproductive events, smaller litter sizes and lower loss of blastocysts than populations studied in Britain. Adult social groups in Ireland tend to be smaller than in Britain, though significantly larger than social groups from continental Europe. Although progress has been made in estimating the distribution and density of badger populations, national population estimates have varied widely in the Republic of Ireland. Future research should concentrate on filling gaps in our knowledge, including population models and predictive spatial modelling that will contribute to vaccine delivery, management and conservation strategies.
    • The effect of cattle slurry in combination with nitrate and the nitrification inhibitor dicyandiamide on in situ nitrous oxide and dinitrogen emissions

      McGeough, K. L.; Laughlin, Ronald J.; Watson, C. J.; Muller, Christoph; Ernfors, M.; Cahalan, E.; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; RSF 07 519 (European Geosciences Union, 04/12/2012)
      A field study was conducted to determine the effect of the nitrification inhibitor dicyandiamide (DCD) on N2O and N2 emissions after cattle slurry (CS) application in the presence of nitrate (NO3) fertiliser on seven different occasions (between March 2009 and March 2011). N2O emissions from CS in the presence of NO3 fertiliser were very high (0.4–8.7% of applied N) over a 20-day period, under mild moist conditions. Emissions were significantly larger from the CS treatment compared to an NH4+-N source, supplying the same rate of N as in the slurry. This study supports the view that organic fertilisers should not be applied at the same time as nitrate-based fertilisers, as significant increases in N2O emissions occur. The average N2O mole fraction (N2O/(N2O + N2)) over all seven application dates was 0.34 for CSNO3 compared to 0.24 for the NH4ClNO3 treatment, indicating the dominance of N2 emissions. The rate of nitrification in CSNO3 was slower than in NH4ClNO3, and DCD was found to be an effective nitrification inhibitor in both treatments. However, as N2O emissions were found to be predominantly associated with the NO3 pool, the effect of DCD in lowering N2O emissions is limited in the presence of a NO3 fertiliser. To obtain the maximum cost-benefit of DCD in lowering N2O emissions, under mild moist conditions, it should not be applied to a nitrate containing fertiliser (e.g. ammonium nitrate or calcium ammonium nitrate), and therefore the application of DCD should be restricted to ammonium-based organic or synthetic fertilisers.
    • Effect of chemical amendments to dairy soiled water and time between application and rainfall on phosphorus and sediment losses in runoff

      Serrenho, Ana; Fenton, Owen; Murphy, Paul N. C.; Grant, Jim; Healy, Mark G.; Department of Agriculture, Food and the Marine, Ireland; RSF 07 525 (Elsevier, 15/07/2012)
      Dairy soiled water (DSW) is a dilute, low nutrient effluent produced on Irish dairy farms through the regular washing down of milking parlours and holding areas. In Ireland, there is no closed period for the land application of DSW except where heavy rain is forecast within 48 h. Chemical amendments have the potential to decrease phosphorus (P) and suspended sediment (SS) loss from DSW applied to land. This study examined the impact of three time intervals (12, 24 and 48 h) between DSW application and rainfall and five treatments (control, unamended DSW, and DSW amended with lime, alum or ferric chloride (FeCl2)) on P and sediment losses from an intact grassland soil in runoff boxes. Rainfall was simulated at 10.5 ± 1 mm h− 1. Phosphorus concentrations (1–1.6 mg L− 1) in runoff from DSW application, while not quantitative measures of P loss to surface waters in the field, indicated the importance of incidental P losses and that the current 48 h restriction in Ireland is prudent. Unamended DSW application increased P loss by, on average, 71%, largely due to an increase in particulate phosphorus (PP) loss. All three amendments were effective in decreasing P and SS losses in runoff and, apart from the SS results for lime, were significantly different (p < 0.05) to the control at at least one time point. Lime (a 64% reduction in total phosphorus (TP) in comparison with DSW only) was less effective than alum or FeCl2, likely due to the lower solubility of CaCO3 in water. Chemical amendment showed potential to decrease P losses from land application of DSW, but the efficacy of such amendments would need to be assessed in field trials and a cost–benefit analysis conducted to further examine whether they could be practically implemented on farms.
    • Effect of organic, conventional and mixed cultivation practices on soil microbial community structure and nematode abundance in a cultivated onion crop

      Reilly, Kim; Cullen, Eileen; Lola-Luz, Theodora; Stone, Dote; Valverde, Juan; Gaffney, Michael; Brunton, Nigel; Grant, Jim; Griffiths, Bryan; Department of Agriculture, Food and the Marine, Ireland; et al. (Wiley, 07/06/2013)
      BACKGROUND: Responses of the soil microbial and nematode community to organic and conventional agricultural practices were studied using the Teagasc Kinsealy Systems Comparison trial as the experimental system. The trial is a long term field experiment which divides conventional and organic agriculture into component pest-control and soil treatment practices. We hypothesised that management practices would affect soil ecology and used community level physiological profiles (CLPP), microbial and nematode counts, and denaturing gradient gel electrophoresis (DGGE) to characterise soil microbial communities in plots used for onion (Allium cepa L.) cultivation. RESULTS: Microbial activity and culturable bacterial counts were significantly higher under fully organic management. Culturable fungi, actinomycete and nematode counts showed a consistent trend towards higher numbers under fully organic management but these data were not statistically significant. No differences were found in the fungal/bacterial ratio. DGGE banding patterns and sequencing of excised bands showed clear differences between treatments. Putative onion fungal pathogens were predominantly sequenced under conventional soil treatment practices whilst putative soil suppressive bacterial species were predominantly sequenced from the organic pest-control treatment plots. CONCLUSION: Organic management increased microbial activity and diversity. Sequence data was indicative of differences in functional groups and warrants further investigation.
    • The effect of precipitation and application rate on dicyandiamide persistence and efficiency in two Irish grassland soils

      Cahalan, E.; Minet, E.; Emfors, M.; Muller, Christoph; Devaney, D.; Forrestal, Patrick J.; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; RSF 07519; RSF 07545 (Wiley, 14/07/2015)
      The nitrification inhibitor dicyandiamide (DCD) has had variable success in reducing nitrate (NO3-) leaching and nitrous oxide (N2O) emissions from soils receiving nitrogen (N) fertilisers. Factors such as soil type, temperature and moisture have been linked to the variable efficacy of DCD. Since DCD is water soluble it can be leached from the rooting zone where it is intended to inhibit nitrification. Intact soil columns (15 cm diameter by 35 cm long) were taken from luvic gleysol and haplic cambisol grassland sites and placed in growth chambers. DCD was applied at 15 or 30 kg DCD ha-1, with high or low precipitation. Leaching of DCD, mineral N and the residual soil DCD concentrations were determined over eight weeks High precipitation increased DCD in leachate and decreased recovery in soil. A soil x DCD rate interaction was detected for the DCD unaccounted (proxy for degraded DCD). In the cambisol degradation of DCD was high (circa 81%) and unaffected by DCD rate. In contrast DCD degradation in the gleysol was lower and differentially affected by rate, 67 and 46% for the 15 and 30 kg ha-1 treatments, respectively. Differences DCD degradation rates between soils may be related to differences in organic matter content and associated microbiological activity. Variable degradation rates of DCD in soil, unrelated to temperature or moisture, may contribute to varying DCD efficacy. Soil properties should be considered when tailoring DCD strategies for improving nitrogen use efficiency and crop yields, through the reduction of reactive nitrogen loss.
    • The effect of renovation of long-term temperate grassland on N2O emissions and N leaching from contrasting soils

      Krol, Dominika; Jones, M. B.; Williams, M.; Richards, Karl G.; Bourdin, F.; Lanigan, Gary; Department of Agriculture, Food and the Marine, Ireland; 07 RSF 527 (Elsevier, 19/04/2016)
      Renovation of long-term grassland is associated with a peak in soil organic N mineralisation which, coupled with diminished plant N uptake can lead to large gaseous and leaching N losses. This study reports on the effect of ploughing and subsequent N fertilisation on the N2O emissions and DON/NO3− leaching, and evaluates the impact of ploughing technique on the magnitude and profile of N losses. This study was carried out on isolated grassland lysimeters of three Irish soils representing contrasting drainage properties (well-drained Clonakilty, moderately-drained Elton and poorly-drained Rathangan). Lysimeters were manually ploughed simulating conventional (CT) and minimum tillage (MT) as two treatments. Renovation of grassland increased N2O flux to a maximum of 0.9 kg N2O–N ha− 1 from poorly-drained soil over four days after treatment. Although there was no difference between CT and MT in the post-ploughing period, the treatment influenced subsequent N2O after fertiliser applications. Fertilisation remained the major driver of N losses therefore reducing fertilisation rate post-planting to account for N mineralised through grassland renovation could reduce the losses in medium to longer term. Leaching was a significant loss pathway, with the cumulative drainage volume and N leached highly influenced by soil type. Overall, the total N losses (N2O + N leached) were lowest from poorly and moderately draining soil and highest for the well draining soil, reflecting the dominance of leaching on total N losses and the paramount importance of soil properties.
    • Effects of urease and nitrification inhibitors on yields and emissions in grassland and spring barley

      Forrestal, Patrick J.; Wall, David; Carolan, Rachael; Harty, Mary A.; Roche, Leanne; Krol, Dominika; Watson, C. J.; Lanigan, Gary; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; et al. (International Fertiliser Society, 09/12/2016)
      In trials conducted in the temperate maritime climate of Ireland on a range of acidic soils, calcium ammonium nitrate (CAN) and urea gave comparable yield performance. There was little evidence of reduced yields by using urea for grassland or spring barley. Our finding that urea produced annual yields that were not significantly different from CAN differs from previous studies which found that yields from urea were lower than those from ammonium nitrate or nitrate based fertiliser in the UK. However, there are also published results from trials conducted in temperate Irish grassland showing equal yield performance of CAN and urea in the 1970s. Based on yield performance and the cost of fertiliser there is scope to dramatically increase the level of urea usage in straight and blended fertilisers in the temperate maritime climate of Ireland in both grassland and spring barley. Such an increase will bring substantial benefits in terms of reducing direct nitrous oxide (N2O) emissions from fertiliser applied to soil, particularly in poorly draining soils subject to high levels of precipitation. Nitrogen recovery by plants tends to be more sensitive to differences in fertiliser efficiency than is yield. Although yields did not differ between urea and CAN; urea had a lower nitrogen recovery indicating that urea usage will also result in a reduced level of fertiliser use efficiency. Reduced efficiency is less tangible to farmers who tend to be primarily concerned with dependable yield results. Reduced efficiency is a problem nonetheless, particularly as it is closely linked to NH3 emissions in urea usage. European countries including Ireland have committed to reduce national NH3 emissions to comply with the revised National Emission Ceilings Directive (2001/81/EC) in Europe. Increased urea usage, which looks attractive from a yield, cost and direct N2O perspective in Ireland, runs counter to meeting these commitments. Additionally, NH3 is a source of indirect N2O emissions that will negate some of the N2O savings from urea. Due to the issues of yield dependability, fertiliser efficiency, N2O and NH3 emissions the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) is a particularly attractive option for making urea use more efficient by addressing its key weakness in the area of variable NH3 loss and efficiency. The urease inhibitor NBPT along with the nitrification inhibitor dicyandiamide (DCD) were tested with urea in comparison with calcium ammonium nitrate (CAN). The nitrification inhibitor DCD was very effective in reducing fertiliser N associated N2O emissions. Indeed, its usage allowed N2O levels to be reduced to levels comparable to where no application of N fertiliser was made at some site-years. However, at the DCD incorporation rate tested, DCD contributed to variability in NH3 loss from urea and suppressed both yield response and fertiliser efficiency. Use of the urease inhibitor NBPT in addition to DCD went a substantial way to resolving these shortcomings. Continuing work is needed to tailor the rate of existing and new urease and nitrification inhibitors to optimise the balance between suppression of gaseous N emissions, agronomic performance and economic considerations.
    • Evaluation of Amendments to Control Phosphorus Losses in Runoff from Dairy-Soiled Water

      Fenton, Owen; Serrenho, Ana; Healy, Mark G.; Department of Agriculture, Food and the Marine, Ireland; RSF 07 525 (Springer, 2011-11)
      Amendments with the potential to reduce phosphorus (P) losses from agricultural grassland arising from the land application of dairy-soiled water (DSW) were investigated. Optimal application rates were studied, and associated costs and feasibility were estimated. First, batch tests were carried out to identify appropriate chemicals or phosphorus sorbing materials to control P in runoff from DSW. Then, the best four treatments were examined in an agitator test. In this test, soil—placed in a beaker—was loaded with DSW or amended DSW at a rate equivalent to 5 mm ha−1 (the maximum permissible application rate of DSW allowable in a 42-day period in Ireland). The soil was overlain with continuously stirred water to simulate runoff on land-applied DSW. Optimum application rates were selected based on percentage removal of dissolved reactive phosphorus in overlying water and the estimated cost of amendment. The costs of the amendments, per cubic metre of DSW, increased in the order: bottom ash (1.55 €), alum (1.67 to 1.92 €), FeCl2·4H2O (3.55 to 8.15 €), and lime (20.31 to 88.65 €). The feasibility of the amendments, taking into account their cost, potential adverse effects, public perception, and their performance, decreased in the order: alum > FeCl2·4H2O > bottom ash > lime. Amendments to DSW could be introduced in critical source areas—areas where high soil test P and direct migration pathways to a receptor overlap.