• Absence of Curli in Soil-Persistent Escherichia coli Is Mediated by a C-di-GMP Signaling Defect and Suggests Evidence of Biofilm-Independent Niche Specialization

      Somorin, Yinka M; Vollmerhausen, Tara; Waters, Nicholas; Pritchard, Leighton; Abram, Florence; Brennan, Fiona P.; O'Byrne, Conor; Thomas Crawford Hayes Research Award; NUI Galway College of Science (Frontiers, 2018-06-22)
      Escherichia coli is commonly viewed as a gastrointestinal commensal or pathogen although an increasing body of evidence suggests that it can persist in non-host environments as well. Curli are a major component of biofilm in many enteric bacteria including E. coli and are important for adherence to different biotic and abiotic surfaces. In this study we investigated curli production in a unique collection of soil-persistent E. coli isolates and examined the role of curli formation in environmental persistence. Although most soil-persistent E. coli were curli-positive, 10% of isolates were curli-negative (17 out of 170). Curli-producing E. coli (COB583, COB585, and BW25113) displayed significantly more attachment to quartz sand than the curli-negative strains. Long-term soil survival experiments indicated that curli production was not required for long-term survival in live soil (over 110 days), as a curli-negative mutant BW25113ΔcsgB had similar survival compared to wild type BW25113. Mutations in two genes associated with c-di-GMP metabolism, dgcE and pdeR, correlated with loss of curli in eight soil-persistent strains, although this did not significantly impair their survival in soil compared to curli-positive strains. Overall, the data indicate that curli-deficient and biofilm-defective strains, that also have a defect in attachment to quartz sand, are able to reside in soil for long periods of time thus pointing to the possibility that niches may exist in the soil that can support long-term survival independently of biofilm formation.
    • Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): A review

      Fenton, Owen; O hUallachain, Daire (Elsevier, 2012-05)
      Biofuel consumption is increasing and in order to meet EU targets, alternatives to first and second generation biofuels are being examined. The use of micro-algal biomass in the production of biofuel is an area of research which has received attention in recent years. Traditionally, microalgae are commercially grown using synthetic fertilisers, the price of which is linked with rising oil prices. An alternative to the use of inorganic fertiliser is to use surplus agricultural manures in their raw state, bi-products of anaerobic digestion, or runoff and artificial drainage waters, all of which have variable nutrient contents within and across source types. Many studies showed that manures containing a high nutrient content e.g. pig and poultry manures, or bi-products from anaerobic digestion, are potentially viable sources of nutrients to grow algae. Feasibility issues prevail such as variable nutrient contents amongst and across source types, transparency issues and early and sustained nutrient losses during the storage phase. Agitation and efficient nutrient testing before use are important. In Ireland, pig and poultry manures, dairy dirty water, artificial drainage or runoff waters where coupled with agitation during storage to prevent P precipitation and a CO2 source, all have potential to be used in the future.
    • Agriculture, meteorology and water quality in Ireland: a regional evaluation of pressures and pathways of nutrient loss to water

      Schulte, Rogier P.; Richards, Karl G.; Daly, Karen M.; Kurz, Isabelle; McDonald, E.; Holden, Nicholas M. (Royal Irish Academy, 31/07/2006)
      The main environmental impact of Irish agriculture on surface and ground water quality is the potential transfer of nutrients to water. Soil water dynamics mediate the transport of nutrients to water, and these dynamics in turn depend on agro-meteorological conditions, which show large variations between regions, seasons and years. In this paper we quantify and map the spatio-temporal variability of agro-meteorological factors that control nutrient pressures and pathways of nutrient loss. Subsequently, we evaluate their impact on the water quality of Irish rivers. For nitrogen, pressure and pathways factors coincide in eastern and southern areas, which is reflected in higher nitrate levels of the rivers in these regions. For phosphorus, pathway factors are most pronounced in north-western parts of the country. In south-eastern parts, high pressure factors result in reduced biological water quality. These regional differences require that farm practices be customised to reflect the local risk of nutrient loss to water. Where pathways for phosphorus loss are present almost year-round—as is the case in most of the north-western part of the country—build-up of pressures should be prevented, or ameliorated where already high. In south-eastern areas, spatio-temporal coincidence of nutrient pressures and pathways should be prevented, which poses challenges to grassland management.
    • The Agrodiversity Experiment: three years of data from a multisite study in intensively managed grasslands

      Kirwan, Laura; Connolly, John; Brophy, C.; Baadshaug, Ole; Belanger, Gilles; Black, Alistair D; Camus, Tim; Collins, Rosemary; Cop, Jure; Delgado, Ignacio; et al. (Ecological Society of America, 11/06/2014)
      Intensively managed grasslands are globally prominent ecosystems. We investigated whether experimental increases in plant diversity in intensively managed grassland communities can increase their resource use efficiency. This work consisted of a coordinated, continental-scale 33-site experiment. The core design was 30 plots, representing 15 grassland communities at two seeding densities. The 15 communities were comprised of four monocultures (two grasses and two legumes) and 11 four-species mixtures that varied in the relative abundance of the four species at sowing. There were 1028 plots in the core experiment, with another 572 plots sown for additional treatments. Sites agreed a protocol and employed the same experimental methods with certain plot management factors, such as seeding rates and number of cuts, determined by local practice. The four species used at a site depended on geographical location, but the species were chosen according to four functional traits: a fast-establishing grass, a slow-establishing persistent grass, a fast-establishing legume, and a slow-establishing persistent legume. As the objective was to maximize yield for intensive grassland production, the species chosen were all high-yielding agronomic species. The data set contains species-specific biomass measurements (yield per species and of weeds) for all harvests for up to four years at 33 sites. Samples of harvested vegetation were also analyzed for forage quality at 26 sites. Analyses showed that the yield of the mixtures exceeded that of the average monoculture in >97% of comparisons. Mixture biomass also exceeded that of the best monoculture (transgressive overyielding) at about 60% of sites. There was also a positive relationship between the diversity of the communities and aboveground biomass that was consistent across sites and persisted for three years. Weed invasion in mixtures was very much less than that in monocultures. These data should be of interest to ecologists studying relationships between diversity and ecosystem function and to agronomists interested in sustainable intensification. The large spatial scale of the sites provides opportunity for analyses across spatial (and temporal) scales. The database can also complement existing databases and meta-analyses on biodiversity–ecosystem function relationships in natural communities by focusing on those same relationships within intensively managed agricultural grasslands.
    • The ALFAM2 database on ammonia emission from field-applied manure: Description and illustrative analysis

      Hafner, Sasha D.; Pacholski, Andreas; Bittman, Shabtai; Burchill, William; Bussink, Wim; Chantigny, Martin; Carozzi, Marco; Génermont, Sophie; Häni, Christoph; Hansen, Martin N.; et al. (Elsevier, 2017-12-27)
      Ammonia (NH3) emission from animal manure contributes to air pollution and ecosystem degradation, and the loss of reactive nitrogen (N) from agricultural systems. Estimates of NH3 emission are necessary for national inventories and nutrient management, and NH3 emission from field-applied manure has been measured in many studies over the past few decades. In this work, we facilitate the use of these data by collecting and organizing them in the ALFAM2 database. In this paper we describe the development of the database and summarise its contents, quantify effects of application methods and other variables on emission using a data subset, and discuss challenges for data analysis and model development. The database contains measurements of emission, manure and soil properties, weather, application technique, and other variables for 1895 plots from 22 research institutes in 12 countries. Data on five manure types (cattle, pig, mink, poultry, mixed, as well as sludge and “other”) applied to three types of crops (grass, small grains, maize, as well as stubble and bare soil) are included. Application methods represented in the database include broadcast, trailing hose, trailing shoe (narrow band application), and open slot injection. Cattle manure application to grassland was the most common combination, and analysis of this subset (with dry matter (DM) limited to <15%) was carried out using mixed- and fixed-effects models in order to quantify effects of management and environment on ammonia emission, and to highlight challenges for use of the database. Measured emission in this subset ranged from <1% to 130% of applied ammonia after 48 h. Results showed clear, albeit variable, reductions in NH3 emission due to trailing hose, trailing shoe, and open slot injection of slurry compared to broadcast application. There was evidence of positive effects of air temperature and wind speed on NH3 emission, and limited evidence of effects of slurry DM. However, random-effects coefficients for differences among research institutes were among the largest model coefficients, and showed a deviation from the mean response by more than 100% in some cases. The source of these institute differences could not be determined with certainty, but there is some evidence that they are related to differences in soils, or differences in application or measurement methods. The ALFAM2 database should be useful for development and evaluation of both emission factors and emission models, but users need to recognize the limitations caused by confounding variables, imbalance in the dataset, and dependence among observations from the same institute. Variation among measurements and in reported variables highlights the importance of international agreement on how NH3 emission should be measured, along with necessary types of supporting data and standard protocols for their measurement. Both are needed in order to produce more accurate and useful ammonia emission measurements. Expansion of the ALFAM2 database will continue, and readers are invited to contact the corresponding author for information on data submission. The latest version of the database is available at http://www.alfam.dk.
    • Ammonia emissions from cattle dung, urine and urine with dicyandiamide in a temperate grassland

      Fischer, K.; Burchill, William; Lanigan, Gary; Kaupenjohann, M.; Chambers, B. J.; Richards, Karl G.; Forrestal, Patrick J.; Department of Agriculture, Food and the Marine, Ireland; RSF13S430; 11S138 (Wiley, 03/09/2015)
      Deposition of urine and dung in pasture-based livestock production systems is a major source of ammonia (NH3) volatilization, contributing to the eutrophication and acidification of water bodies and to indirect nitrous oxide emissions. The objectives of this study were to (i) measure NH3 volatilization from dung and urine in three seasons, (ii) test the effect of spiking urine with the nitrification inhibitor dicyandiamide (DCD) on NH3 volatilization and (iii) generate NH3 emission factors (EFs) for dung, urine and urine + DCD in temperate maritime grassland. Accordingly, simulated dung, urine and urine spiked with DCD (at 30 kg DCD/ha equivalent rate) patches were applied to temperate grassland. Treatments were applied three times in 2014 with one measurement of NH3 loss being completed in spring, summer and autumn. The NH3-N EF was highest in spring, which was most likely due to the near absence of rainfall throughout the duration of loss measurement. The EFs across the experiments ranged between 2.8 and 5.3% (mean 3.9%) for dung, 8.7 and 14.9% (mean 11.2%) for urine and 9.5 and 19.5% (mean 12.9%) for urine + DCD, showing that ammonia loss from dung was significantly lower than from urine. Aggregating country-specific emission data such as those from the current experiment with data from climatically similar regions (perhaps in a weighted manner which accounts for the relative abundance of certain environmental conditions) along with modelling is a potentially resourceefficient approach for refining national ammonia inventories.
    • Ammonia emissions from cattle dung, urine and urine with dicyandiamide in a temperate grassland

      Fischer, K.; Burchill, William; Lanigan, Gary; Kaupenjohann, M.; Chambers, B. J.; Richards, Karl G.; Forrestal, Patrick J.; Department of Agriculture, Food and the Marine, Ireland (Wiley, 03/09/2015)
      Deposition of urine and dung in pasture-based livestock production systems is a major source of ammonia (NH3) volatilization, contributing to the eutrophication and acidification of water bodies and to indirect nitrous oxide emissions. The objectives of this study were to (i) measure NH3 volatilization from dung and urine in three seasons, (ii) test the effect of spiking urine with the nitrification inhibitor dicyandiamide (DCD) on NH3 volatilization and (iii) generate NH3 emission factors (EFs) for dung, urine and urine + DCD in temperate maritime grassland. Accordingly, simulated dung, urine and urine spiked with DCD (at 30 kg DCD/ha equivalent rate) patches were applied to temperate grassland. Treatments were applied three times in 2014 with one measurement of NH3 loss being completed in spring, summer and autumn. The NH3-N EF was highest in spring, which was most likely due to the near absence of rainfall throughout the duration of loss measurement. The EFs across the experiments ranged between 2.8 and 5.3% (mean 3.9%) for dung, 8.7 and 14.9% (mean 11.2%) for urine and 9.5 and 19.5% (mean 12.9%) for urine + DCD, showing that ammonia loss from dung was significantly lower than from urine. Aggregating country-specific emission data such as those from the current experiment with data from climatically similar regions (perhaps in a weighted manner which accounts for the relative abundance of certain environmental conditions) along with modelling is a potentially resource-efficient approach for refining national ammonia inventories.
    • Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: insights into loss abatement in temperate grassland

      Forrestal, Patrick J.; Harty, Mary A.; Carolan, Rachael; Lanigan, Gary; Watson, C. J.; Laughlin, Ronald J.; McNeill, Gavin; Chambers, B. J.; Richards, Karl G.; Teagasc Walsh Fellowship Programme; et al. (Wiley, 17/11/2015)
      Fertilizer nitrogen (N) contributes to ammonia (NH3) emissions, which European Union member states have committed to reduce. This study focused on evaluating NH3-N loss from a suite of N fertilizers over multiple applications, and gained insights into the temporal and seasonal patterns of NH3-N loss from urea in Irish temperate grassland using wind tunnels. The fertilizers evaluated were calcium ammonium nitrate (CAN), urea and urea with the N stabilizers N-(n-butyl) thiophosphoric triamide (NBPT), dicyandiamide (DCD), DCD+NBPT and a maleic and itaconic acid polymer (MIP). 200 (and 400 for urea only) kg N/ha/yr was applied in five equal applications over the growing season at two grassland sites (one for MIP). Mean NH3-N losses from CAN were 85% lower than urea and had highly variable loss (range 45% points). The effect of DCD on NH3 emissions was variable. MIP did not decrease NH3-N loss, but NBPT caused a 78.5% reduction and, when combined with DCD, a 74% reduction compared with urea alone. Mean spring and summer losses from urea were similar, although spring losses were more variable with both the lowest and highest losses. Maximum NH3-N loss usually occurred on the second day after application. These data highlight the potential of stabilized urea to alter urea NH3-N loss outcomes in temperate grassland, the need for caution when using season as a loss risk guide and that urea hydrolysis in temperate grassland initiates quickly. Micrometeorological measurements focused specifically on urea are needed to determine absolute NH3-N loss levels in Irish temperate grassland.
    • Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: insights into loss abatement in temperate grassland

      Forrestal, Patrick J.; Harty, Mary A.; Carolan, Rachael; Lanigan, Gary; Watson, C. J.; Laughlin, Ronald J.; McNeill, Gavin; Chambers, B. J.; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; et al. (Wiley, 17/11/2015)
      Fertilizer nitrogen (N) contributes to ammonia (NH3) emissions, which European Union member states have committed to reduce. This study focused on evaluating NH3-N loss from a suite of N fertilizers over multiple applications, and gained insights into the temporal and seasonal patterns of NH3-N loss from urea in Irish temperate grassland using wind tunnels. The fertilizers evaluated were calcium ammonium nitrate (CAN), urea and urea with the N stabilizers N-(n-butyl) thiophosphoric triamide (NBPT), dicyandiamide (DCD), DCD+NBPT and a maleic and itaconic acid polymer (MIP). 200 (and 400 for urea only) kg N/ha/yr was applied in five equal applications over the growing season at two grassland sites (one for MIP). Mean NH3-N losses from CAN were 85% lower than urea and had highly variable loss (range 45% points). The effect of DCD on NH3 emissions was variable. MIP did not decrease NH3-N loss, but NBPT caused a 78.5% reduction and, when combined with DCD, a 74% reduction compared with urea alone. Mean spring and summer losses from urea were similar, although spring losses were more variable with both the lowest and highest losses. Maximum NH3-N loss usually occurred on the second day after application. These data highlight the potential of stabilized urea to alter urea NH3-N loss outcomes in temperate grassland, the need for caution when using season as a loss risk guide and that urea hydrolysis in temperate grassland initiates quickly. Micrometeorological measurements focused specifically on urea are needed to determine absolute NH3-N loss levels in Irish temperate grassland.
    • An Analysis of Abatement Potential of Greenhouse Gas Emissions in Irish Agriculture 2021-2030

      Lanigan, Gary; Donnellan, Trevor; Hanrahan, Kevin; Carsten, Paul; Shalloo, Laurence; Krol, Dominika; Forrestal, Patrick J.; Farrelly, Niall; O’Brien, Donal; Ryan, Mary; et al. (Teagasc, 2018-06-10)
      This report has been prepared by the Teagasc Working Group on GHG Emissions, which brings together and integrates the extensive and diverse range of organisational expertise on agricultural greenhouse gases. The previous Teagasc GHG MACC was published in 2012 in response to both the EU Climate and Energy Package and related Effort Sharing Decision and in the context of the establishment of the Food Harvest 2020 production targets.
    • Application of Dexter’s soil physical quality index: an Irish case study

      Fenton, Owen; Vero, Sara E.; Schulte, Rogier P.; O'Sullivan, Lilian; Bondi, G.; Creamer, Rachel E.; Department of Agriculture, Food and the Marine, Ireland; 6582 (Teagasc (Agriculture and Food Development Authority), Ireland, 26/08/2017)
      Historically, due to a lack of measured soil physical data, the quality of Irish soils was relatively unknown. Herein, we investigate the physical quality of the national representative profiles of Co. Waterford. To do this, the soil physical quality (SPQ) S-Index, as described by Dexter (2004a,b,c) using the S-theory (which seeks the inflection point of a soil water retention curve [SWRC]), is used. This can be determined using simple (S-Indirect) or complex (S-Direct) soil physical data streams. Both are achievable using existing data for the County Waterford profiles, but until now, the suitability of this S-Index for Irish soils has never been tested. Indirect-S provides a generic characterisation of SPQ for a particular soil horizon, using simplified and modelled information (e.g. texture and SWRC derived from pedo-transfer functions), whereas Direct-S provides more complex site-specific information (e.g. texture and SWRC measured in the laboratory), which relates to properties measured for that exact soil horizon. Results showed a significant correlation between S-Indirect (Si) and S-Direct (Sd). Therefore, the S-Index can be used in Irish soils and presents opportunities for the use of Si at the national scale. Outlier horizons contained >6% organic carbon (OC) and bulk density (Bd) values <1 g/cm3 and were not suitable for Si estimation. In addition, the S-Index did not perform well on excessively drained soils. Overall correlations of Si. with Bd and of Si. with OC% for the dataset were detected. Future work should extend this approach to the national scale dataset in the Irish Soil Information System.
    • Assessing the role of artificially drained agricultural land for climate change mitigation in Ireland

      Paul, Carsten; Fealy, Reamonn; Fenton, Owen; Lanigan, Gary; O’Sullivan, Lilian; Schulte, Rogier P.; Irish Dairy Research Fund; Teagasc Greenhouse Gas Working Group; Department of Agriculture, Food and the Marine (Elsevier, 2017-12-19)
      In 2014 temperate zone emission factor revisions were published in the IPCC Wetlands Supplement. Default values for direct CO2 emissions of artificially drained organic soils were increased by a factor of 1.6 for cropland sites and by factors ranging from 14 to 24 for grassland sites. This highlights the role of drained organic soils as emission hotspots and makes their rewetting more attractive as climate change mitigation measures. Drainage emissions of humic soils are lower on a per hectare basis and not covered by IPCC default values. However, drainage of great areas can turn them into nationally relevant emission sources. National policy making that recognizes the importance of preserving organic and humic soils’ carbon stock requires data that is not readily available. Taking Ireland as a case study, this article demonstrates how a dataset of policy relevant information can be generated. Total area of histic and humic soils drained for agriculture, resulting greenhouse gas emissions and climate change mitigation potential were assessed. For emissions from histic soils, calculations were based on IPCC emission factors, for humic soils, a modified version of the ECOSSE model was used. Results indicated 370,000 ha of histic and 426,000 ha of humic soils under drained agricultural land use in Ireland (8% and 9% of total farmed area). Calculated annual drainage emissions were 8.7 Tg CO2e from histic and 1.8 Tg CO2e from humic soils (equal to 56% of Ireland’s agricultural emissions in 2014, excluding emissions from land use). If half the area of drained histic soils was rewetted, annual saving would amount to 3.2 Tg CO2e. If on half of the deep drained, nutrient rich grasslands drainage spacing was decreased to control the average water table at −25 cm or higher, annual savings would amount to 0.4 Tg CO2e.
    • Assessing the role of artificially drained agricultural land for climate change mitigation in Ireland

      Paul, Carsten; Fealy, Reamonn; Fenton, Owen; Lanigan, Gary; O'Sullivan, Lilian; Schulte, Rogier P.; Irish Dairy Research Fund; Teagasc Greenhouse Gas Working Group; Department of Agriculture, Food and the Marine (Elsevier, 2017-12-19)
      In 2014 temperate zone emission factor revisions were published in the IPCC Wetlands Supplement. Default values for direct CO2 emissions of artificially drained organic soils were increased by a factor of 1.6 for cropland sites and by factors ranging from 14 to 24 for grassland sites. This highlights the role of drained organic soils as emission hotspots and makes their rewetting more attractive as climate change mitigation measures. Drainage emissions of humic soils are lower on a per hectare basis and not covered by IPCC default values. However, drainage of great areas can turn them into nationally relevant emission sources. National policy making that recognizes the importance of preserving organic and humic soils’ carbon stock requires data that is not readily available. Taking Ireland as a case study, this article demonstrates how a dataset of policy relevant information can be generated. Total area of histic and humic soils drained for agriculture, resulting greenhouse gas emissions and climate change mitigation potential were assessed. For emissions from histic soils, calculations were based on IPCC emission factors, for humic soils, a modified version of the ECOSSE model was used. Results indicated 370,000 ha of histic and 426,000 ha of humic soils under drained agricultural land use in Ireland (8% and 9% of total farmed area). Calculated annual drainage emissions were 8.7 Tg CO2e from histic and 1.8 Tg CO2e from humic soils (equal to 56% of Ireland’s agricultural emissions in 2014, excluding emissions from land use). If half the area of drained histic soils was rewetted, annual saving would amount to 3.2 Tg CO2e. If on half of the deep drained, nutrient rich grasslands drainage spacing was decreased to control the average water table at −25 cm or higher, annual savings would amount to 0.4 Tg CO2e.
    • Atypical Listeria innocua strains possess an intact LIPI-3

      Clayton, Evelyn M; Daly, Karen M.; Guinane, Caitriona M.; Hill, Colin; Cotter, Paul D.; Ross, R Paul; Enterprise Ireland; Science Foundation Ireland; 06/IN.1/B98; 10/IN.1/B3027 (Biomed Central, 08/03/2014)
      Background: Listeria monocytogenes is a food-borne pathogen which is the causative agent of listeriosis and can be divided into three evolutionary lineages I, II and III. While all strains possess the well established virulence factors associated with the Listeria pathogenicity island I (LIPI-1), lineage I strains also possess an additional pathogenicity island designated LIPI-3 which encodes listeriolysin S (LLS), a post-translationally modified cytolytic peptide. Up until now, this pathogenicity island has been identified exclusively in a subset of lineage I isolates of the pathogen Listeria monocytogenes. Results: In total 64 L. innocua strains were screened for the presence of LIPI-3. Here we report the identification of an intact LIPI-3 in 11 isolates of L. innocua and the remnants of the cluster in several others. Significantly, we can reveal that placing the L. innocua lls genes under the control of a constitutive promoter results in a haemolytic phenotype, confirming that the cluster is capable of encoding a functional haemolysin. Conclusions: Although the presence of the LIPI-3 gene cluster is confined to lineage I isolates of L. monocytogenes, a corresponding gene cluster or its remnants have been identified in many L. innocua strains.
    • Biogeography of arbuscular mycorrhizal fungal spore traits along an aridity gradient, and responses to experimental rainfall manipulation

      Deveautour, Coline; Chieppa, Jeff; Nielsen, Uffe N.; Boer, Matthias M.; Mitchell, Christopher; Horn, Sebastian; Power, Sally A.; Guillen, Alberto; Bennett, Alison E.; Powell, Jeff R.; et al. (Elsevier BV, 2020-08)
      Spore size, colour and melanin content are hypothesised to be functional in relation to environmental stress. Here, we studied AM fungal spores in arid environments of Australia and in an experimental platform simulating altered rainfall. We used microscopy and image analysis to measure spore colour and size, and a quantitative colorimetric assay to estimate melanin content in spores. In arid sites, melanin content tended to increase with increasing aridity. We observed a large range of spore colours at all sites but found a higher proportion of both dark and light spores, and fewer intermediate colours, in drier sites. Spore abundance and size varied among sites, but neither were related to aridity. In the experimental platform established in a grassland, we found no evidence that altered rainfall influenced spore traits. This study identifies traits associated with environmental stress to inform future work into AM fungal life history and assembly processes.
    • Botanical rejuvenation of field margins and benefits for invertebrate fauna on a drystock farm in County Longford

      Sheridan, Helen; Finn, John; O'Donovan, Grace; Teagasc Walsh Fellowship Programme (Royal Irish Academy, 30/07/2009)
      This study investigates methods to rejuvenate the fl ora of previously degraded fi eld margins on a pastoral farm in County Longford. We also assess the effects of individual treatments on the abundance of various orders of invertebrates recorded within the experimental plots. Field margin treatments were 1.5m-wide unfenced control margins, 1.5m-wide fenced margins or 3.5m-wide fenced margins. Nutrient inputs were excluded from all of the experimental plots. The botanical composition of the plots was examined on four occasions between 2002 and 2004 using permanent, nested quadrats. Emergence traps were used to measure invertebrate abundance within treatment plots and the main sward. Results indicated that 1) exclusion of nutrient inputs had a positive effect on plant species richness within the fi eld margins; 2) plant species richness decreased with increased distance from the hedgerow; 3) herb species richness was greatest in the 1.5m closest to the hedgerow; 4) greater abundance of invertebrates occurred within the 3.5m-wide margins; 5) successful control of Pteridium aquilinum was achieved through spot treatment with the selective herbicide ‘Asulox’; and 6) a combination of management techniques such as cutting and grazing is likely to enhance plant species richness and facilitate the structural diversity of vegetation that is necessary for many invertebrate taxa.
    • Can the agronomic performance of urea equal calcium ammonium nitrate across nitrogen rates in temperate grassland?

      Forrestal, Patrick J.; Harty, Mary A.; Carolan, Rachael; Watson, C. J.; Lanigan, Gary; Wall, David; Hennessy, Deirdre; Richards, Karl G.; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine, Ireland; et al. (Wiley, 23/03/2017)
      In temperate grassland, urea has been shown to have lower nitrous oxide emissions compared to ammonium nitrate-based fertilizer and is less expensive. However, nitrogen (N) loss via ammonia volatilization from urea raises questions regarding yield performance and efficiency. This study compares the yield and N offtake of grass fertilized with urea, calcium ammonium nitrate (CAN) and urea treated with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) at six site-years. Five annual fertilizer N rates (100–500 kg N/ha) were applied in five equal splits of 20–100 kg N/ha during the growing season. On average, urea produced slightly better yields than CAN in spring (103.5% of CAN yield) and slightly poorer yields in summer (98.4% of CAN yield). There was no significant difference in annual grass yield between urea, CAN and urea + NBPT. Urea had the lowest cost per tonne of DM grass yield produced. However, the urea treatment had lower N offtake than CAN and this difference was more pronounced as the N rate increased. There was no difference in N offtake between urea + NBPT and CAN. While this study shows that urea produced yields comparable to CAN, urea apparent fertilizer N recovery (AFNR) tends to be lower. Urea selection in place of CAN will increase national ammonia emissions which is problematic for countries with targets to reduce ammonia emissions. Promisingly, NBPT allows the agronomic performance of urea to consistently equal CAN across N rates by addressing the ammonia loss limitations of urea.
    • Carbon and nitrogen dynamics and greenhouse gas emissions in constructed wetlands treating wastewater: a review

      Department of Agriculture, Food and the Marine; Jahangir, Mohammad M. R.; Richards, Karl G.; Healy, Mark G.; Gill, L.; Muller, Christoph; Johnston, Paul; Fenton, Owen; Irish Research Council; Department of Agriculture, Food and the Marine, Ireland (European Geosciences Union, 18/01/2016)
      The removal efficiency of carbon (C) and nitrogen (N) in constructed wetlands (CWs) is very inconsistent and frequently does not reveal whether the removal processes are due to physical attenuation or whether the different species have been transformed to other reactive forms. Previous research on nutrient removal in CWs did not consider the dynamics of pollution swapping (the increase of one pollutant as a result of a measure introduced to reduce a different pollutant) driven by transformational processes within and around the system. This paper aims to address this knowledge gap by reviewing the biogeochemical dynamics and fate of C and N in CWs and their potential impact on the environment, and by presenting novel ways in which these knowledge gaps may be eliminated. Nutrient removal in CWs varies with the type of CW, vegetation, climate, season, geographical region, and management practices. Horizontal flow CWs tend to have good nitrate (NO3−) removal, as they provide good conditions for denitrification, but cannot remove ammonium (NH4+) due to limited ability to nitrify NH4+. Vertical flow CWs have good NH4+ removal, but their denitrification ability is low. Surface flow CWs decrease nitrous oxide (N2O) emissions but increase methane (CH4) emissions; subsurface flow CWs increase N2O and carbon dioxide (CO2) emissions, but decrease CH4 emissions. Mixed species of vegetation perform better than monocultures in increasing C and N removal and decreasing greenhouse gas (GHG) emissions, but empirical evidence is still scarce. Lower hydraulic loadings with higher hydraulic retention times enhance nutrient removal, but more empirical evidence is required to determine an optimum design. A conceptual model highlighting the current state of knowledge is presented and experimental work that should be undertaken to address knowledge gaps across CWs, vegetation and wastewater types, hydraulic loading rates and regimes, and retention times, is suggested. We recommend that further research on process-based C and N removal and on the balancing of end products into reactive and benign forms is critical to the assessment of the environmental performance of CWs.
    • Carbon and nitrogen dynamics: Greenhouse gases in groundwater beneath a constructed wetland treating municipal wastewater

      Jahangir, Mohammad M. R.; Richards, Karl G.; Fenton, Owen; Carroll, Paul; Harrington, Rory; Johnston, Paul (ESAI, 26/02/2014)
      Constructed wetlands (CW) act as nitrogen (N) sinks and reactors facilitating a number of physical, chemical and biological processes. The N removal efficiency of through-flowing water in such systems when used to treat municipal wastewater is variable. Their overall removal efficiencies do not specifically explain which N species have been removed by physical attenuation, and by biological assimilation or transformation to other forms. A wider understanding of how N removal occurs would help elucidate how losses of N and associated gases from CW impact on water and air quality. The objective of this study is to investigate the C and N cycling processes in the porewater of soils immediately adjacent, up-gradient and down- gradient to helophyte —vegetated CW cells.
    • Carbon cycling in temperate grassland under elevated temperature

      Jansen-Willems, Anne B.; Lanigan, Gary; Grunhage, Ludger; Muller, Christoph; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; RSF 10/SC/716 (Wiley, 01/11/2016)
      An increase in mean soil surface temperature has been observed over the last century, and it is predicted to further increase in the future. The effect of increased temperature on ecosystem carbon fluxes in a permanent temperate grassland was studied in a long-term (6 years) field experiment, using multiple temperature increments induced by IR lamps. Ecosystem respiration (R-eco) and net ecosystem exchange (NEE) were measured and modeled by a modified Lloyd and Taylor model including a soil moisture component for R-eco (average R2 of 0.78) and inclusion of a photosynthetic component based on temperature and radiation for NEE (R2 = 0.65). Modeled NEE values ranged between 2.3 and 5.3 kg CO2 m−2 year−1, depending on treatment. An increase of 2 or 3°C led to increased carbon losses, lowering the carbon storage potential by around 4 tonnes of C ha−1 year−1. The majority of significant NEE differences were found during night-time compared to daytime. This suggests that during daytime the increased respiration could be offset by an increase in photosynthetic uptake. This was also supported by differences in δ13C and δ18O, indicating prolonged increased photosynthetic activity associated with the higher temperature treatments. However, this increase in photosynthesis was insufficient to counteract the 24 h increase in respiration, explaining the higher CO2 emissions due to elevated temperature.