Reincarnation of Bacteriocins From the Lactobacillus Pangenomic Graveyard
Author
Collins, Fergus W. J.Mesa-Pereira, Beatriz
O'Connor, Paula M.
Rea, Mary

Hill, Colin
Ross, R Paul
Date
2018-07-02
Metadata
Show full item recordStatistics
Display Item StatisticsCitation
Collins FWJ, Mesa-Pereira B, O'Connor PM, Rea MC, Hill C and Ross RP (2018) Reincarnation of Bacteriocins From the Lactobacillus Pangenomic Graveyard. Front. Microbiol. 9:1298. doi: 10.3389/fmicb.2018.01298Abstract
Bacteria commonly produce narrow spectrum bacteriocins as a means of inhibiting closely related species competing for similar resources in an environment. The increasing availability of genomic data means that it is becoming easier to identify bacteriocins encoded within genomes. Often, however, the presence of bacteriocin genes in a strain does not always translate into biological antimicrobial activity. For example, when analysing the Lactobacillus pangenome we identified strains encoding ten pediocin-like bacteriocin structural genes which failed to display inhibitory activity. Nine of these bacteriocins were novel whilst one was identified as the previously characterized bacteriocin “penocin A.” The composition of these bacteriocin operons varied between strains, often with key components missing which are required for bacteriocin production, such as dedicated bacteriocin transporters and accessory proteins. In an effort to functionally express these bacteriocins, the structural genes for the ten pediocin homologs were cloned alongside the dedicated pediocin PA-1 transporter in both Escherichia coli and Lactobacillus paracasei heterologous hosts. Each bacteriocin was cloned with its native leader sequence and as a fusion protein with the pediocin PA-1 leader sequence. Several of these bacteriocins displayed a broader spectrum of inhibition than the original pediocin PA-1. We show how potentially valuable bacteriocins can easily be “reincarnated” from in silico data and produced in vitro despite often lacking the necessary accompanying machinery. Moreover, the study demonstrates how genomic datasets such as the Lactobacilus pangenome harbor a potential “arsenal” of antimicrobial activity with the possibility of being activated when expressed in more genetically amenable hosts.Funder
Science Foundation IrelandGrant Number
SFI/12/RC/227ae974a485f413a2113503eed53cd6c53
https://dx.doi.org/10.3389/fmicb.2018.01298
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States