Agricultural Catchments
The Agricultural Catchments Programme is based on a partnership with farmers and other stakeholders and aims to support productive agriculture while protecting water quality. The programme integrates advice and research and operates in small river catchments of 500 to 2,900ha. The programme, funded by the Department of Agriculture, Food and the Marine and run by Teagasc, is implemented by a team of researchers, advisers and technicians working closely with farmers. The programme advisers provide an intensive advisory and planning service to farmers in the catchments with support from their colleagues locally and nationally. Their purpose is to improve the profitability of the farms and help the farmers to implement the Good Agricultural Practice measures contained in the National Action Programme. The programme’s research and technical staff work with the farmers and advisers to evaluate the environmental and economic effects of the measures.
Recent Submissions
-
Coupled steroid and phosphorus leaching from cattle slurry at lysimeter scaleWater quality degradation can be caused by excessive agricultural nutrient transfers from fertilised soils exposed to wet weather. Mitigation measures within the EU Nitrates Directive aim to reduce this pressure by including ‘closed’ fertiliser spreading periods during wet months. For organic fertilisers such as slurry and manure, this closed period requires sufficient on-farm winter storage and good weather conditions to relieve storage at the end of the period. Therefore, robust scientific evidence is needed to support the measure. Incidental nutrient transfers of recently applied organic fertilisers in wet weather can also be complicated by synchronous transfers from residual soil stores and tracing is required for risk assessments. The combination of nutrient monitoring and biomarker analyses may aid this and one such biomarker suite is faecal steroids. Accordingly, this study investigated the persistence of steroids and their association with phosphorus during leaching episodes. The focus was on the coupled behaviour of steroids and total phosphorus (TP) concentrations in sub-surface hydrological pathways. Cattle slurry was applied to monolith lysimeters either side of a closed period and concentrations of both steroids and TP were monitored in the leachate. The study showed no significant effect of the treatment (average p = 0.17), though tracer concentrations did significantly change over time (average p = 0.001). While the steroidal concentration ratio was validated for herbivorous faecal pollution in the leachate, there was a weak positive correlation between the steroids and TP. Further investigation at more natural scales (hillslope/catchment) is required to confirm tracer behaviours/correlations and to compliment this sub-surface pathway study.
-
An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwaterIntensification of the food production system to meet increased global demand for food has led to veterinary pharmaceuticals becoming a critical component in animal husbandry. Anticoccidials are a group of veterinary products used to control coccidiosis in food-producing animals, with primary prophylactic use in poultry production. Excretion in manure and subsequent land-spreading provides a potential pathway to groundwater. Information on the fate and occurrence of these compounds in groundwater is scant, therefore these substances are potential emerging organic contaminants of concern. A study was carried out to investigate the occurrence of anticoccidial compounds in groundwater throughout the Republic of Ireland. Twenty-six anticoccidials (6 ionophores and 20 synthetic anticoccidials) were analysed at 109 sites (63 boreholes and 46 springs) during November and December 2018. Sites were categorised and selected based on the following source and pathway factors: (a) the presence/absence of poultry activity (b) predominant aquifer category and (c) predominant groundwater vulnerability, within the zone of contribution (ZOC) for each site. Seven anticoccidials, including four ionophores (lasalocid, monensin, narasin and salinomycin) and three synthetic anticoccidials (amprolium, diclazuril and nicarbazin), were detected at 24% of sites at concentrations ranging from 1 to 386 ng L−1. Monensin and amprolium were the two most frequently detected compounds, detected at 15% and 7% of sites, respectively. Multivariate statistical analysis has shown that source factors are the most significant drivers of the occurrence of anticoccidials, with no definitive relationships between occurrence and pathway factors. The study found that the detection of anticoccidial compounds is 6.5 times more likely when poultry activity is present within the ZOC of a sampling point, compared to the absence of poultry activity. This work presents the first detections of these contaminants in Irish groundwater and it contributes to broadening our understanding of the environmental occurrence and fate of anticoccidial veterinary products.
-
Using a multi-dimensional approach for catchment scale herbicide pollution assessmentsWorldwide herbicide use in agriculture, whilst safeguarding yields also presents water quality issues. Controlling factors in agricultural catchments include both static and dynamic parameters. The present study investigated the occurrence of herbicides in streams and groundwater in two meso-scale catchments with contrasting flow controls and agricultural landuse (grassland and arable land). Using a multi-dimensional approach, streams were monitored from November 2018 to November 2019 using Chemcatcher® passive sampling devices and groundwater was sampled in 95 private drinking water wells. The concentrations of herbicides were larger in the stream of the Grassland catchment (8.9–472.6 ng L−1) dominated by poorly drained soils than in the Arable catchment (0.9–169.1 ng L−1) dominated by well-drained soils. Incidental losses of herbicides during time of application and low flows in summer caused concentrations of MCPA, Fluroxypyr, Trichlorpyr, Clopyralid and Mecoprop to exceeded the European Union (EU) drinking water standard due to a lack of dilution. Herbicides were present in the stream throughout the year and the total mass load was higher in winter flows, suggesting a persistence of primary chemical residues in soil and sub-surface environments and restricted degradation. Losses of herbicides to the streams were source limited and influenced by hydrological conditions. Herbicides were detected in 38% of surveyed drinking water wells. While most areas had concentrations below the EU drinking water standard some areas with well-drained soils in the Grassland catchment, had concentrations exceeding recommendations. Individual wells had concentrations of Clopyralid (619 ng L−1) and Trichlorpyr (650 ng L−1). Despite the study areas not usually associated with herbicide pollution, and annual mass loads being comparatively low, many herbicides were present in both surface and groundwater, sometimes above the recommendations for drinking water. This whole catchment assessment provides a basis to develop collaborative measures to mitigate pollution of water by herbicides.
-
Integrated climate-chemical indicators of diffuse pollution from land to waterManagement of agricultural diffuse pollution to water remains a challenge and is influenced by the complex interactions of rainfall-runoff pathways, soil and nutrient management, agricultural landscape heterogeneity and biogeochemical cycling in receiving water bodies. Amplified cycles of weather can also influence nutrient loss to water although they are less considered in policy reviews. Here, we present the development of climate-chemical indicators of diffuse pollution in highly monitored catchments in Western Europe. Specifically, we investigated the influences and relationships between weather processes amplified by the North Atlantic Oscillation during a sharp upward trend (2010–2016) and the patterns of diffuse nitrate and phosphorus pollution in rivers. On an annual scale, we found correlations between local catchment-scale nutrient concentrations in rivers and the influence of larger, oceanic-scale climate patterns defined by the intensity of the North Atlantic Oscillation. These influences were catchment-specific showing positive, negative or no correlation according to a typology. Upward trends in these decadal oscillations may override positive benefits of local management in some years or indicate greater benefits in other years. Developing integrated climate-chemical indicators into catchment monitoring indicators will provide a new and important contribution to water quality management objectives.
-
Handling the phosphorus paradox in agriculture and natural ecosystems: Scarcity, necessity, and burden of PThis special issue of Ambio compiles a series of contributions made at the 8th International Phosphorus Workshop (IPW8), held in September 2016 in Rostock, Germany. The introducing overview article summarizes major published scientific findings in the time period from IPW7 (2015) until recently, including presentations from IPW8. The P issue was subdivided into four themes along the logical sequence of P utilization in production, environmental, and societal systems: (1) Sufficiency and efficiency of P utilization, especially in animal husbandry and crop production; (2) P recycling: technologies and product applications; (3) P fluxes and cycling in the environment; and (4) P governance. The latter two themes had separate sessions for the first time in the International Phosphorus Workshops series; thus, this overview presents a scene-setting rather than an overview of the latest research for these themes. In summary, this paper details new findings in agricultural and environmental P research, which indicate reduced P inputs, improved management options, and provide translations into governance options for a more sustainable P use.
-
Challenges of Reducing Phosphorus Based Water Eutrophication in the Agricultural Landscapes of Northwest EuropeIn this paper, we outline several recent insights for the priorities and challenges for future research for reducing phosphorus (P) based water eutrophication in the agricultural landscapes of Northwest Europe. We highlight that new research efforts best be focused on headwater catchments as they are a key influence on the initial chemistry of the larger river catchments, and here many management interventions are most effectively made. We emphasize the lack of understanding on how climate change will impact on P losses from agricultural landscapes. Particularly, the capability to disentangle current and future trends in P fluxes, due to climate change itself, from climate driven changes in agricultural management practices and P inputs. Knowing that, future climatic change trajectories for Western Europe will accelerate the release of the most bioavailable soil P. We stress the ambiguities created by the large varieties of sources and storage/transfer processes involved in P emissions in landscapes and the need to develop specific data treatment methods or tracers able to circumvent them, thereby helping catchment managers to identify the ultimate P sources that most contribute to diffuse P emissions. We point out that soil and aqueous P exist not only in various chemical forms, but also in range of less considered physical forms e.g., dissolved, nanoparticulate, colloidal and other particulates, all affected differently by climate as well as other environmental factors, and require bespoke mitigation measures. We support increased high resolution monitoring of headwater catchments, to not only help verify the effectiveness of catchments mitigation strategies, but also add data to further develop new water quality models (e.g., those include Fe-P interactions) which can deal with climate and land use change effects within an uncertainty framework. We finally conclude that there is a crucial need for more integrative research efforts to deal with our incomplete understanding of the mechanisms and processes associated with the identification of critical source areas, P mobilization, delivery and biogeochemical processing, as otherwise even high-intensity and high-resolution research efforts will only reveal an incomplete picture of the full global impact of the terrestrial derived P on downstream aquatic and marine ecosystems.
-
The role of colloids and other fractions in the below-ground delivery of phosphorus from agricultural hillslopes to streamsColloids can be important for facilitated transfer of phosphorus (P) to groundwater (GW) and contribute to elevated P concentrations later delivered to surface water. To assess the role of colloidal P and other P fractions in delivery processes via below-ground pathways, this study investigated the influence of catchment and flow event characteristics on particulate (>450 nm), medium-sized colloidal (200–450 nm) and fine (<200 nm) P fractions in two agricultural hillslopes (TG, TA). Total and dissolved P fractions and their derivatives were also monitored. Samples in both stream and GW were taken weekly during baseflow conditions and every 2 h during storm conditions. Higher frequency monitoring of streamflow was also conducted to delineate hydrological flowpaths and determine P loads and hysteresis processes. Results indicated that during baseflow fine P was dominant in the streams (80 to 100 % of total P) and in shallow GW in TA (83 to 96 %) whereas in TG shallow GW was dominated by PP (55 to 96 %) possibly due to colloidal Fe-P complexes. Similarly, in TG shallow GW was dominated by PP (79 to 81 %) during high flow events. During a larger flow event (within the period of land fertilization) the quickflow pathway (24 % of total flow) delivered 3.2 g ha−1 of PP which was dominant in the stream (44 to 68 %). A smaller flow event (within the period of prohibited land fertilization) facilitated delivery of P via deeper baseflow pathways (87 % of total flow) as fine reactive P (1.3 g ha−1), also dominant in the stream (73 to 78 %). The research indicated a very limited presence of medium-sized colloidal P but a large presence of fine P that may contribute to elevating P concentrations above environmental thresholds. Further work should constrain the controlling factors for colloidal P presence/absence and also on the extent and speciation of coarser and finer fractions in the hillslope to stream continuum.
-
Quantifying MCPA load pathways at catchment scale using high temporal resolution dataDetection of the agricultural acid herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) in drinking water source catchments is of growing concern, with economic and environmental implications for water utilities and wider ecosystem services. MCPA is poorly adsorbed to soil and highly mobile in water, but hydrological pathway processes are relatively unknown at the catchment scale and limited by coarse resolution data. This understanding is required to target mitigation measures and to provide a framework to monitor their effectiveness. To address this knowledge gap, this study reports findings from river discharge and synchronous MCPA concentration datasets (continuous 7 hour and with additional hourly sampling during storm events) collected over a 7 month herbicide spraying season. The study was undertaken in a surface (source) water catchment (384 km2—of which 154 km2 is agricultural land use) in the cross-border area of Ireland. Combined into loads, and using two pathway separation techniques, the MCPA data were apportioned into event and baseload components and the former was further separated to quantify a quickflow (QF) and other event pathways. Based on the 7 hourly dataset, 85.2 kg (0.22 kg km−2 by catchment area, or 0.55 kg km−2 by agricultural area) of MCPA was exported from the catchment in 7 months. Of this load, 87.7 % was transported via event flow pathways with 72.0 % transported via surface dominated (QF) pathways. Approximately 12 % of the MCPA load was transported via deep baseflows, indicating a persistence in this delayed pathway, and this was the primary pathway condition monitored in a weekly regulatory sampling programme. However, overall, the data indicated a dominant acute, storm dependent process of incidental MCPA loss during the spraying season. Reducing use and/or implementing extensive surface pathway disconnection measures are the mitigation options with greatest potential, the success of which can only be assessed using high temporal resolution monitoring techniques.
-
Using a multi-dimensional approach for catchment scale herbicide pollution assessments.Worldwide herbicide use in agriculture, whilst safeguarding yields also presents water quality issues. Controlling factors in agricultural catchments include both static and dynamic parameters. The present study investigated the occurrence of herbicides in streams and groundwater in two meso-scale catchments with contrasting flow controls and agricultural landuse (grassland and arable land). Using a multi-dimensional approach, streams were monitored from November 2018 to November 2019 using Chemcatcher® passive sampling devices and groundwater was sampled in 95 private drinking water wells. The concentrations of herbicides were larger in the stream of the Grassland catchment (8.9-472.6 ng L-1) dominated by poorly drained soils than in the Arable catchment (0.9-169.1 ng L-1) dominated by well-drained soils. Incidental losses of herbicides during time of application and low flows in summer caused concentrations of MCPA, Fluroxypyr, Trichlorpyr, Clopyralid and Mecoprop to exceeded the European Union (EU) drinking water standard due to a lack of dilution. Herbicides were present in the stream throughout the year and the total mass load was higher in winter flows, suggesting a persistence of primary chemical residues in soil and sub-surface environments and restricted degradation. Losses of herbicides to the streams were source limited and influenced by hydrological conditions. Herbicides were detected in 38% of surveyed drinking water wells. While most areas had concentrations below the EU drinking water standard some areas with well-drained soils in the Grassland catchment, had concentrations exceeding recommendations. Individual wells had concentrations of Clopyralid (619 ng L-1) and Trichlorpyr (650 ng L-1). Despite the study areas not usually associated with herbicide pollution, and annual mass loads being comparatively low, many herbicides were present in both surface and groundwater, sometimes above the recommendations for drinking water. This whole catchment assessment provides a basis to develop collaborative measures to mitigate pollution of water by herbicides.
-
Benchmarking a decade of holistic agro-environmental studies within the Agricultural Catchments ProgrammeMeeting sustainable food production challenges requires efficient ways to manage nutrients and mitigate the losses of nitrogen (N) and phosphorus (P) to water. Future nutrient management therefore requires a clearer understanding of the relative influence of soils, geology, farm practice, landscape and weather on the propensity for nutrients to be lost to water. Within the Agricultural Catchments Programme (ACP), environmental, agronomic and socioeconomic data have been gathered since 2009, using the same experimental methodology in five meso-scale river catchments, and one karst spring zone, covering a range of soils, landscapes and farming systems. The ACP has contributed to a better understanding of nutrient mobilisation and transfer pathways and highlighted the influence of the physical and chemical environment as well as agricultural and meteorological drivers on diffuse nutrient loss to ground and surface waters. The environmental quality standards were breached for N and/or P in some of the catchments, but for different reasons and not always clearly linked to the source pressures within the catchment. There are clearly no one-size-fits-all solutions for mitigation of nutrient losses to water. A better understanding of the underlying processes is required to identify critical source areas, to select mitigation strategies, when to implement them and to build realistic expectations of their impact. Sustainability in an agricultural setting is not confined to environmental issues, but also includes social, economic and innovative aspects. To maximise farmers’ uptake of environmental measures, the actions should encompass all these aspects of sustainability. Integrated knowledge transfer is key.
-
Using a multi-dimensional approach for catchment scale herbicide pollution assessmentsWorldwide herbicide use in agriculture, whilst safeguarding yields also presents water quality issues. Controlling factors in agricultural catchments include both static and dynamic parameters. The present study investigated the occurrence of herbicides in streams and groundwater in two meso-scale catchments with contrasting flow controls and agricultural landuse (grassland and arable land). Using a multi-dimensional approach, streams were monitored from November 2018 to November 2019 using Chemcatcher® passive sampling devices and groundwater was sampled in 95 private drinking water wells. The concentrations of herbicides were larger in the stream of the Grassland catchment (8.9–472.6 ng L−1) dominated by poorly drained soils than in the Arable catchment (0.9–169.1 ng L−1) dominated by well-drained soils. Incidental losses of herbicides during time of application and low flows in summer caused concentrations of MCPA, Fluroxypyr, Trichlorpyr, Clopyralid and Mecoprop to exceeded the European Union (EU) drinking water standard due to a lack of dilution. Herbicides were present in the stream throughout the year and the total mass load was higher in winter flows, suggesting a persistence of primary chemical residues in soil and sub-surface environments and restricted degradation. Losses of herbicides to the streams were source limited and influenced by hydrological conditions. Herbicides were detected in 38% of surveyed drinking water wells. While most areas had concentrations below the EU drinking water standard some areas with well-drained soils in the Grassland catchment, had concentrations exceeding recommendations. Individual wells had concentrations of Clopyralid (619 ng L−1) and Trichlorpyr (650 ng L−1). Despite the study areas not usually associated with herbicide pollution, and annual mass loads being comparatively low, many herbicides were present in both surface and groundwater, sometimes above the recommendations for drinking water. This whole catchment assessment provides a basis to develop collaborative measures to mitigate pollution of water by herbicides.
-
The Beast from the East: impact of an atypical cold weather event on hydrology and nutrient dynamics in two Irish catchmentsA historic lack of continuous stream nutrient monitoring at the catchment scale limits understanding of the effects of snowstorms. The most significant snowstorm since 1985, nicknamed “the Beast from the East”, occurred in February–March 2018. High-frequency stream outlet monitoring in two close but hydrologically and agriculturally contrasting catchments (<1,200 ha) captured phosphorus (total and reactive), total oxygenated nitrogen (TON), temperature and discharge dynamics during and after the event. The grassland catchment consists of poorly drained gley soils and exhibits overland flow pathways, while the arable catchment consists of well-drained brown earths and is dominated by subsurface pathways. Nitrate (NO3-N) concentrations were initially elevated (3.50 and 7.89 mg/L for poorly drained grassland and well-drained arable catchments, respectively) before becoming diluted by meltwater. Total reactive phosphorus (TRP) displayed a distal (anti-clockwise) concentration-discharge hysteresis in the poorly drained grassland catchment suggesting low mobilisation from the soil. Conversely, the well-drained arable catchment displayed proximal (clockwise) hysteresis, indicative of the mobilisation from stream and bank sediment. These relatively infrequent snow events behave similarly to heavy rainfall as regards nutrient losses, albeit subject to a time-lag induced by the speed of snowmelt and the soil moisture deficit (SMD) prior to snowfall. Antecedent land management is crucial to mitigate risk. The current absence of records and analyses of catchment response, particularly nutrient dynamics, to atypical cold weather events in Ireland limits understanding of their effects on water quality. The present study provides the first such baseline information from which land management strategies and the implications for attaining environmental targets can be explored.
-
A review of the pesticide MCPA in the land‐water environment and emerging research needsDue to its high solubility and poor adsorption to the soil matrix, the postemergence herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) is susceptible to transport into surface and groundwater bodies, where it can result in compromised water quality and breaches of legislative standards. However, there is still poor understanding of catchment scale dynamics and transport, particularly across heterogeneous hydrogeological settings. While it is known that MCPA degrades under aerobic conditions, negligible breakdown can occur in anaerobic environments, potentially creating a legacy in saturated soils. Fast runoff pathways post application are likely transport routes, but the relative contribution from the mobilization of legacy MCPA from anaerobic zones has yet to be quantified, making the delineation of MCPA sources encountered during monitoring programs challenging. While ecotoxicological effects have been examined, little is known about the interaction of MCPA (and its degradation products) with other pesticides, with nutrients or with colloids, and how this combines with environmental conditions to contribute to multiple stressor effects. We examine the state of MCPA knowledge, using case study examples from Ireland, and consider the implications of its widespread detection in waterbodies and drinking water supplies. Research themes required to ensure the sustainable and safe use of MCPA in an evolving agricultural, social and political landscape are identified here. These include the need to identify mitigation measures and/or alternative treatments, to gain insights into the conditions governing mobilization and attenuation, to map pathways of migration and to identify direct, synergistic and antagonistic ecotoxicological effects.
-
Using a multi-dimensional approach for catchment scale herbicide pollution assessmentsWorldwide herbicide use in agriculture, whilst safeguarding yields also presents water quality issues. Controlling factors in agricultural catchments include both static and dynamic parameters. The present study investigated the occurrence of herbicides in streams and groundwater in two meso-scale catchments with contrasting flow controls and agricultural landuse (grassland and arable land). Using a multi-dimensional approach, streams were monitored from November 2018 to November 2019 using Chemcatcher® passive sampling devices and groundwater was sampled in 95 private drinking water wells. The concentrations of herbicides were larger in the stream of the Grassland catchment (8.9–472.6 ng L−1) dominated by poorly drained soils than in the Arable catchment (0.9–169.1 ng L−1) dominated by well-drained soils. Incidental losses of herbicides during time of application and low flows in summer caused concentrations of MCPA, Fluroxypyr, Trichlorpyr, Clopyralid and Mecoprop to exceeded the European Union (EU) drinking water standard due to a lack of dilution. Herbicides were present in the stream throughout the year and the total mass load was higher in winter flows, suggesting a persistence of primary chemical residues in soil and sub-surface environments and restricted degradation. Losses of herbicides to the streams were source limited and influenced by hydrological conditions. Herbicides were detected in 38% of surveyed drinking water wells. While most areas had concentrations below the EU drinking water standard some areas with well-drained soils in the Grassland catchment, had concentrations exceeding recommendations. Individual wells had concentrations of Clopyralid (619 ng L−1) and Trichlorpyr (650 ng L−1). Despite the study areas not usually associated with herbicide pollution, and annual mass loads being comparatively low, many herbicides were present in both surface and groundwater, sometimes above the recommendations for drinking water. This whole catchment assessment provides a basis to develop collaborative measures to mitigate pollution of water by herbicides.
-
Assessments of Composite and Discrete Sampling Approaches for Water Quality MonitoringAchieving an operational compromise between spatial coverage and temporal resolution in national scale river water quality monitoring is a major challenge for regulatory authorities, particularly where chemical concentrations are hydrologically dependent. The efficacy of flow-weighted composite sampling (FWCS) approaches for total phosphorus (TP) sampling (n = 26–52 analysed samples per year), previously applied in monitoring programmes in Norway, Sweden and Denmark, and which account for low to high flow discharges, was assessed by repeated simulated sampling on high resolution TP data. These data were collected in three research catchments in Ireland over the period 2010–13 covering a base-flow index range of 0.38 to 0.69. Comparisons of load estimates were also made with discrete (set time interval) daily and sub-daily sampling approaches (n = 365 to >1200 analysed samples per year). For all years and all sites a proxy of the Norwegian sampling approach, which is based on re-forecasting discharge for each 2-week deployment, proved most stable (median TP load estimates of 87–98%). Danish and Swedish approaches, using long-term flow records to set a flow constant, were only slightly less effective (median load estimates of 64–102% and 80–96%, respectively). Though TP load estimates over repeated iterations were more accurate using the discrete approaches, particularly the 24/7 approach (one sample every 7 h in a 24 bottle sampler - median % load estimates of 93–100%), composite load estimates were more stable, due to the integration of multiple small samples (n = 100–588) over a deployment.
-
Gain in Nitrogen Yield from Grass-Legume Mixtures is Robust Over a Wide Range of Legume Proportions and Environmental ConditionsGlobal food security is currently challenged and requires sustainable intensification of agriculture through initiatives that include more efficient use of nitrogen (N) and increased protein self-sufficiency through home-grown crops. Such challenges were addressed in a continental-scale field experiment conducted over three years, in which the amount of total nitrogen yield (Ntot) and the gain in N yield in mixtures as compared to grass monocultures (Ngainmix) was quantified from four-species grass-legume stands with greatly varying legume proportions. Stands consisted of monocultures and mixtures of two N2 fixing legumes and two non-fixing grasses. The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass monocultures at the majority of evaluated sites in all three years. Ntot and thus Ngainmix increased with increasing legume proportion up to one third of legumes. With higher percentages of legumes, Ntot and Ngainmix did not further increase. Thus, across sites and years, mixtures with one third proportion of legumes had 57% higher Ntot than grass monocultures and attained ∼95% of the maximum Ntot acquired by any stand. The relative N gain in mixture (Ngainmix/Ntotmix) was most severely impaired by minimum site temperature (R = 0.64, P = 0.010). Nevertheless, Ngainmix/Ntotmix was not correlated to site productivity (P = 0.500), suggesting that, within climatic restrictions, balanced grass-legume mixtures can benefit from comparable relative gains in N yield across largely differing productivity levels. We conclude that higher N output (Ntot or forage protein per unit area) can be achieved with grass-legume mixtures than with pure grass alone for a given amount of N fertilizer applied; conversely, the same N output can be achieved by mixed swards with less input of N. Therefore, the use of grass-legume mixtures can substantially contribute to resource-efficient agricultural grassland systems over a wide range of productivity levels, implying important savings in N fertilizers and greenhouse gas emissions.
-
Functional Land Management for managing soil functions: A case-study of the trade-off between primary productivity and carbon storage in response to the intervention of drainage systems in IrelandGlobally, there is growing demand for increased agricultural outputs. At the same time, the agricultural industry is expected to meet increasingly stringent environmental targets. Thus, there is an urgent pressure on the soil resource to deliver multiple functions simultaneously. The Functional Land Management framework (Schulte et al., 2014) is a conceptual tool designed to support policy making to manage soil functions to meet these multiple demands. This paper provides a first example of a practical application of the Functional Land Management concept relevant to policy stakeholders. In this study we examine the trade-offs, between the soil functions ‘primary productivity’ and ‘carbon cycling and storage’, in response to the intervention of land drainage systems applied to ‘imperfectly’ and ‘poorly’ draining managed grasslands in Ireland. These trade-offs are explored as a function of the nominal price of ‘Certified Emission Reductions’ or ‘carbon credits’. Also, these trade-offs are characterised spatially using ArcGIS to account for spatial variability in the supply of soil functions. To manage soil functions, it is essential to understand how individual soil functions are prioritised by those that are responsible for the supply of soil functions – generally farmers and foresters, and those who frame demand for soil functions – policy makers. Here, in relation to these two soil functions, a gap exists in relation to this prioritisation between these two stakeholder groups. Currently, the prioritisation and incentivisation of these competing soil functions is primarily a function of CO2 price. At current CO2 prices, the agronomic benefits outweigh the monetised environmental costs. The value of CO2 loss would only exceed productivity gains at either higher CO2 prices or at a reduced discount period rate. Finally, this study shows large geographic variation in the environmental cost: agronomic benefit ratio. Therein, the Functional Land Management framework can support the development of policies that are more tailored to contrasting biophysical environments and are therefore more effective than ‘blanket approaches’ allowing more specific and effective prioritisation of contrasting soil functions.
-
Groundwater nitrate reduction versus dissolved gas production: A tale of two catchmentsAt the catchment scale, a complex mosaic of environmental, hydrogeological and physicochemical characteristics combine to regulate the distribution of groundwater and stream nitrate (NO3 −). The efficiency of NO3 − removal (via denitrification) versus the ratio of accumulated reaction products, dinitrogen (excess N2) & nitrous oxide (N2O), remains poorly understood. Groundwater was investigated in two well drained agricultural catchments (10 km2 ) in Ireland with contrasting subsurface lithologies (sandstone vs. slate) and landuse. Denitrification capacity was assessed by measuring concentration and distribution patterns of nitrogen (N) species, aquifer hydrogeochemistry, stable isotope signatures and aquifer hydraulic properties. A hierarchy of scale whereby physical factors including agronomy, water table elevation and permeability determined the hydrogeochemical signature of the aquifers was observed. This hydrogeochemical signature acted as the dominant control on denitrification reaction progress. High permeability, aerobic conditions and a lack of bacterial energy sources in the slate catchment resulted in low denitrification reaction progress (0–32%), high NO3 − and comparatively low N2O emission factors (EF5g1). In the sandstone catchment denitrification progress ranged from 4 to 94% and was highly dependent on permeability, water table elevation, dissolved oxygen concentration solid phase bacterial energy sources. Denitrification of NO3− to N2 occurred in anaerobic conditions, while at intermediate dissolved oxygen; N2O was the dominant reaction product. EF5g1 (mean: 0.0018) in the denitrifying sandstone catchment was 32% less than the IPCC default. The denitrification observations across catchments were supported by stable isotope signatures. Stream NO3 − occurrence was 32% lower in the sandstone catchment even though N loading was substantially higher than the slate catchment.
-
Predicting microbial water quality with models: Over-arching questions for managing risk in agricultural catchmentsThe application of models to predict concentrations of faecal indicator organisms (FIOs) in environmental systems plays an important role for guiding decision-making associated with the management of microbial water quality. In recent years there has been an increasing demand by policy-makers for models to help inform FIO dynamics in order to prioritise efforts for environmental and human-health protection. However, given the limited evidence-base on which FIO models are built relative to other agricultural pollutants (e.g. nutrients) it is imperative that the end-user expectations of FIO models are appropriately managed. In response, this commentary highlights four over-arching questions associated with: (i) model purpose; (ii) modelling approach; (iii) data availability; and (iv) model application, that must be considered as part of good practice prior to the deployment of any modelling approach to predict FIO behaviour in catchment systems. A series of short and longer-term research priorities are proposed in response to these questions in order to promote better model deployment in the field of catchment microbial dynamics.
-
Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopographyDefining critical source areas (CSAs) of diffuse pollution in agricultural catchments depends upon the accurate delineation of hydrologically sensitive areas (HSAs) at highest risk of generating surface runoff pathways. In topographically complex landscapes, this delineation is constrained by digital elevation model (DEM) resolution and the influence of microtopographic features. To address this, optimal DEM resolutions and point densities for spatially modelling HSAs were investigated, for onward use in delineating CSAs. The surface runoff framework was modelled using the Topographic Wetness Index (TWI) and maps were derived from 0.25 m LiDAR DEMs (40 bare-earth points m−2), resampled 1 m and 2 m LiDAR DEMs, and a radar generated 5 m DEM. Furthermore, the resampled 1 m and 2 m LiDAR DEMs were regenerated with reduced bare-earth point densities (5, 2, 1, 0.5, 0.25 and 0.125 points m−2) to analyse effects on elevation accuracy and important microtopographic features. Results were compared to surface runoff field observations in two 10 km2 agricultural catchments for evaluation. Analysis showed that the accuracy of modelled HSAs using different thresholds (5%, 10% and 15% of the catchment area with the highest TWI values) was much higher using LiDAR data compared to the 5 m DEM (70–100% and 10–84%, respectively). This was attributed to the DEM capturing microtopographic features such as hedgerow banks, roads, tramlines and open agricultural drains, which acted as topographic barriers or channels that diverted runoff away from the hillslope scale flow direction. Furthermore, the identification of ‘breakthrough’ and ‘delivery’ points along runoff pathways where runoff and mobilised pollutants could be potentially transported between fields or delivered to the drainage channel network was much higher using LiDAR data compared to the 5 m DEM (75–100% and 0–100%, respectively). Optimal DEM resolutions of 1–2 m were identified for modelling HSAs, which balanced the need for microtopographic detail as well as surface generalisations required to model the natural hillslope scale movement of flow. Little loss of vertical accuracy was observed in 1–2 m LiDAR DEMs with reduced bare-earth point densities of 2–5 points m−2, even at hedgerows. Further improvements in HSA models could be achieved if soil hydrological properties and the effects of flow sinks (filtered out in TWI models) on hydrological connectivity are also considered.