Pilot-scale formation of whey protein aggregates determine the stability of heat-treated whey protein solutions—Effect of pH and protein concentration
Name:
1-s2.0-S0022030218308579-main.pdf
Size:
1.922Mb
Format:
PDF
Description:
main article
Citation
Buggy, A., McManus, J., Brodkorb, A., Hogan, S. and Fenelon, M. (2018). Pilot-scale formation of whey protein aggregates determine the stability of heat-treated whey protein solutions—Effect of pH and protein concentration. Journal of Dairy Science, 101(12), 10819-10830. doi: https://dx.doi.org/10.3168/jds.2017-14177Abstract
Denaturation and consequent aggregation in whey protein solutions is critical to product functionality during processing. Solutions of whey protein isolate (WPI) prepared at 1, 4, 8, and 12% (wt/wt) and pH 6.2, 6.7, or 7.2 were subjected to heat treatment (85°C × 30 s) using a pilot-scale heat exchanger. The effects of heat treatment on whey protein denaturation and aggregation were determined by chromatography, particle size, turbidity, and rheological analyses. The influence of pH and WPI concentration during heat treatment on the thermal stability of the resulting dispersions was also investigated. Whey protein isolate solutions heated at pH 6.2 were more extensively denatured, had a greater proportion of insoluble aggregates, higher particle size and turbidity, and were significantly less heat-stable than equivalent samples prepared at pH 6.7 and 7.2. The effects of WPI concentration on denaturation/aggregation behavior were more apparent at higher pH where the stabilizing effects of charge repulsion became increasingly influential. Solutions containing 12% (wt/wt) WPI had significantly higher apparent viscosities, at each pH, compared with lower protein concentrations, with solutions prepared at pH 6.2 forming a gel. Smaller average particle size and a higher proportion of soluble aggregates in WPI solutions, pre-heated at pH 6.7 and 7.2, resulted in improved thermal stability on subsequent heating. Higher pH during secondary heating also increased thermal stability. This study offers insight into the interactive effects of pH and whey protein concentration during pilot-scale processing and demonstrates how protein functionality can be controlled through manipulation of these factors.Funder
Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the MarineGrant Number
11/F/037ae974a485f413a2113503eed53cd6c53
https://dx.doi.org/10.3168/jds.2017-14177
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States