Comparison of Staphylococcus Phage K with Close Phage Relatives Commonly Employed in Phage Therapeutics
Author
Ajuebor, JudeButtimer, Colin
Arroyo-Moreno, Sara
Chanishvili, Nina
Gabriel, Emma
O’Mahony, Jim
McAuliffe, Olivia
Neve, Horst
Franz, Charles
Coffey, Aidan
Date
2018-04-25
Metadata
Show full item recordStatistics
Display Item StatisticsCitation
Ajuebor, J., Buttimer, C., Arroyo-Moreno, S., Chanishvili, N., Gabriel, E., O’Mahony, J., McAuliffe, O., Neve, H., Franz, C. and Coffey, A. Comparison of Staphylococcus Phage K with Close Phage Relatives Commonly Employed in Phage Therapeutics. Antibiotics, 2018, 7(2), 37. Available at: https://dx.doi.org/10.3390/antibiotics7020037Abstract
The increase in antibiotic resistance in pathogenic bacteria is a public health danger requiring alternative treatment options, and this has led to renewed interest in phage therapy. In this respect, we describe the distinct host ranges of Staphylococcus phage K, and two other K-like phages against 23 isolates, including 21 methicillin-resistant S. aureus (MRSA) representative sequence types representing the Irish National MRSA Reference Laboratory collection. The two K-like phages were isolated from the Fersisi therapeutic phage mix from the Tbilisi Eliava Institute, and were designated B1 (vB_SauM_B1) and JA1 (vB_SauM_JA1). The sequence relatedness of B1 and JA1 to phage K was observed to be 95% and 94% respectively. In terms of host range on the 23 Staphylococcus isolates, B1 and JA1 infected 73.9% and 78.2% respectively, whereas K infected only 43.5%. Eleven open reading frames (ORFs) present in both phages B1 and JA1 but absent in phage K were identified by comparative genomic analysis. These ORFs were also found to be present in the genomes of phages (Team 1, vB_SauM-fRuSau02, Sb_1 and ISP) that are components of several commercial phage mixtures with reported wide host ranges. This is the first comparative study of therapeutic staphylococcal phages within the recently described genus Kayvirus.Funder
Science Foundation IrelandGrant Number
12/R1/2335ae974a485f413a2113503eed53cd6c53
https://dx.doi.org/10.3390/antibiotics7020037
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States
Related items
Showing items related by title, author, creator and subject.
-
Comparison of Staphylococcus Phage K with Close Phage Relatives Commonly Employed in Phage TherapeuticsAjuebor, Jude; Buttimer, Colin; Arroyo-Moreno, Sara; Chanishvili, Nina; Gabriel, Emma; O’Mahony, Jim; McAuliffe, Olivia; Neve, Horst; Franz, Charles; Coffey, Aidan; et al. (MDPI AG, 2018-04-25)The increase in antibiotic resistance in pathogenic bacteria is a public health danger requiring alternative treatment options, and this has led to renewed interest in phage therapy. In this respect, we describe the distinct host ranges of Staphylococcus phage K, and two other K-like phages against 23 isolates, including 21 methicillin-resistant S. aureus (MRSA) representative sequence types representing the Irish National MRSA Reference Laboratory collection. The two K-like phages were isolated from the Fersisi therapeutic phage mix from the Tbilisi Eliava Institute, and were designated B1 (vB_SauM_B1) and JA1 (vB_SauM_JA1). The sequence relatedness of B1 and JA1 to phage K was observed to be 95% and 94% respectively. In terms of host range on the 23 Staphylococcus isolates, B1 and JA1 infected 73.9% and 78.2% respectively, whereas K infected only 43.5%. Eleven open reading frames (ORFs) present in both phages B1 and JA1 but absent in phage K were identified by comparative genomic analysis. These ORFs were also found to be present in the genomes of phages (Team 1, vB_SauM-fRuSau02, Sb_1 and ISP) that are components of several commercial phage mixtures with reported wide host ranges. This is the first comparative study of therapeutic staphylococcal phages within the recently described genus Kayvirus.
-
Phages of non-dairy lactococci: isolation and characterization of ΦL47, a phage infecting the grass isolate Lactococcus lactis ssp. cremoris DPC6860Cavanagh, Daniel; Guinane, Caitriona M.; Neve, Horst; Coffey, Aidan; Ross, R Paul; Fitzgerald, Gerald F; McAuliffe, Olivia; Irish Dairy Levy Research Trust; Teagasc Walsh Fellowship Programme (Frontiers, 13/01/2014)Lactococci isolated from non-dairy sources have been found to possess enhanced metabolic activity when compared to dairy strains. These capabilities may be harnessed through the use of these strains as starter or adjunct cultures to produce more diverse flavor profiles in cheese and other dairy products. To understand the interactions between these organisms and the phages that infect them, a number of phages were isolated against lactococcal strains of non-dairy origin. One such phage, ΦL47, was isolated from a sewage sample using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. Visualization of phage virions by transmission electron microscopy established that this phage belongs to the family Siphoviridae and possesses a long tail fiber, previously unseen in dairy lactococcal phages. Determination of the lytic spectrum revealed a broader than expected host range, with ΦL47 capable of infecting 4 industrial dairy strains, including ML8, HP and 310, and 3 additional non-dairy isolates. Whole genome sequencing of ΦL47 revealed a dsDNA genome of 128, 546 bp, making it the largest sequenced lactococcal phage to date. In total, 190 open reading frames (ORFs) were identified, and comparative analysis revealed that the predicted products of 117 of these ORFs shared greater than 50% amino acid identity with those of L. lactis phage Φ949, a phage isolated from cheese whey. Despite their different ecological niches, the genomic content and organization of ΦL47 and Φ949 are quite similar, with both containing 4 gene clusters oriented in different transcriptional directions. Other features that distinguish ΦL47 from Φ949 and other lactococcal phages, in addition to the presence of the tail fiber and the genome length, include a low GC content (32.5%) and a high number of predicted tRNA genes (8). Comparative genome analysis supports the conclusion that ΦL47 is a new member of the 949 lactococcal phage group which currently includes the dairy Φ949.
-
Three New Escherichia coli Phages from the Human Gut Show Promising Potential for Phage TherapyDalmasso, Marion; Strain, Ronan; Neve, Horst; Franz, C.M.A.P.; Cousin, Fabien J.; Ross, R Paul; Hill, Colin; Science Foundation Ireland; SFI/12/RC/2273 (PLOS, 09/06/2016)With the emergence of multi-drug resistant bacteria the use of bacteriophages (phages) is gaining renewed interest as promising anti-microbial agents. The aim of this study was to isolate and characterize phages from human fecal samples. Three new coliphages, ɸAPCEc01, ɸAPCEc02 and ɸAPCEc03, were isolated. Their phenotypic and genomic characteristics, and lytic activity against biofilm, and in combination with ciprofloxacin, were investigated. All three phages reduced the growth of E. coli strain DPC6051 at multiplicity of infection (MOI) between 10−3 and 105. A cocktail of all three phages completely inhibited the growth of E. coli. The phage cocktail also reduced biofilm formation and prevented the emergence of phage-resistant mutants which occurred with single phage. When combined with ciprofloxacin, phage alone or in cocktail inhibited the growth of E. coli and prevented the emergence of resistant mutants. These three new phages are promising biocontrol agents for E. coli infections.