The Teagasc Food Programme focuses on quality, safety and food product innovation. It is undertaken in collaboration with universities and research institutes in Ireland, the European Union and the USA. The Food Programme is internationally competitive from a scientific point of view while being targeted and applied to generate new opportunities for the Irish food industry The Teagasc Food Programme encompasses many aspects of food science and technology: Food Processing and Functionality, Food Safety, Foods for Health, Food Cultures, Food Quality and Structure, Meat and Meat Products, Prepared Consumer Foods. The Food Programme is run from the Teagasc Food Research Centres at Ashtown, Dublin 14 and Moorepark, Fermoy, Co. Cork

Collections in this community

Recent Submissions

  • In vitro enzyme inhibitory effects of green and brown Australian seaweeds and potential impact on metabolic syndrome

    Shannon, Emer; Conlon, Michael; Hayes, Maria; European Union; Teagasc; 754380 (Springer Science and Business Media LLC, 2023-02-03)
    Hypertension, type-2-diabetes (T2D) and obesity are contributory risk factors for the development of metabolic syndrome. Peptides, polyphenols and polysaccharides may inhibit enzymes involved in the disease pathways of this disorder. Peptide hydrolysates (PEP), polyphenol (PP) and polysaccharide (PS) extracts generated from the Australian seaweeds Phyllospora comosa (Labillardière) C. Agardh, Ecklonia radiata (C. Agardh) J. Agardh, and Ulva ohnoi M. Hiraoka & S. Shimada were screened in vitro for their potential to inhibit enzymes important in the control of diseases associated with metabolic syndrome. These enzymes include angiotensin-I-converting enzyme (ACE-1; EC which affects the development of hypertension in mammals, α-amylase (EC and lipase (EC which play a role in the development of T2D and dietary lipid absorption, respectively. The inhibitory activity of each seaweed extract was determined using established in vitro colorimetric methods with mammalian-derived enzymes and their respective substrates. The ACE-1 half-maximal inhibitory (IC50) concentrations of generated bioactive extracts ranged from 167.52 ± 3.17 µg mL−1 (U. ohnoi PEP) to 713.84 ± 12.45 µg mL−1 (E. radiata PS). None of the extracts screened displayed IC50 values comparable to the positive control drug Captopril (8.87 ± 0.04 µg mL−1). IC50 values determined for extracts that inhibited α-amylase ranged from 58.31 ± 1.41 µg mL−1 (P. comosa PP) to 515.24 ± 10.53 µg mL−1 (E. radiata PEP). All PS and PP had significantly lower IC50 values than the α-amylase inhibitor control, Acarbose (89.90 ± 0.15 µg mL−1). Lipase IC50 values determined for extracts ranged from 52.14 ± 2.77 µg mL−1 (P. comosa PP) to 876.30 ± 34.92 µg mL−1 (E. radiata PEP). All PP had significantly lower IC50 values than the lipase inhibitory drug Orlistat (70.83 ± 0.07 µg mL−1). To the authors’ knowledge there are no published values for the inhibitory potential of P. comosa, E. radiata or U. ohnoi extracts against the enzymes ACE-1, α-amylase, or lipase. These findings demonstrate the functional food potential of P. comosa, E. radiata and U. ohnoi polyphenols, polysaccharides and peptides.
  • Bioinformatic approaches for studying the microbiome of fermented food

    Walsh, Liam H.; Coakley, Mairéad; Walsh, Aaron M.; O’Toole, Paul W.; Cotter, Paul; European Union; Science Foundation Ireland; Department of Agriculture, Food and the Marine; Enterprise Ireland; 818368; et al. (Informa UK Limited, 2022-10-26)
    High-throughput DNA sequencing-based approaches continue to revolutionise our understanding of microbial ecosystems, including those associated with fermented foods. Metagenomic and metatranscriptomic approaches are state-of-the-art biological profiling methods and are employed to investigate a wide variety of characteristics of microbial communities, such as taxonomic membership, gene content and the range and level at which these genes are expressed. Individual groups and consortia of researchers are utilising these approaches to produce increasingly large and complex datasets, representing vast populations of microorganisms. There is a corresponding requirement for the development and application of appropriate bioinformatic tools and pipelines to interpret this data. This review critically analyses the tools and pipelines that have been used or that could be applied to the analysis of metagenomic and metatranscriptomic data from fermented foods. In addition, we critically analyse a number of studies of fermented foods in which these tools have previously been applied, to highlight the insights that these approaches can provide.
  • Deficiency of essential dietary n-3 PUFA disrupts the caecal microbiome and metabolome in mice

    Robertson, Ruairi C.; Seira Oriach, Clara; Murphy, Kiera; Moloney, Gerard M.; Cryan, John F.; Dinan, Timothy G.; Ross, R. P.; Stanton, Catherine; Science Foundation Ireland; Health Research Board of Ireland; et al. (Cambridge University Press (CUP), 2017-11-27)
    n-3 PUFA are lipids that play crucial roles in immune-regulation, cardio-protection and neurodevelopment. However, little is known about the role that these essential dietary fats play in modulating caecal microbiota composition and the subsequent production of functional metabolites. To investigate this, female C57BL/6 mice were assigned to one of three diets (control (CON), n-3 supplemented (n3+) or n-3 deficient (n3−)) during gestation, following which their male offspring were continued on the same diets for 12 weeks. Caecal content of mothers and offspring were collected for 16S sequencing and metabolic phenotyping. n3− male offspring displayed significantly less % fat mass than n3+ and CON. n-3 Status also induced a number of changes to gut microbiota composition such that n3− offspring had greater abundance of Tenericutes, Anaeroplasma and Coriobacteriaceae. Metabolomics analysis revealed an increase in caecal metabolites involved in energy metabolism in n3+ including α-ketoglutaric acid, malic acid and fumaric acid. n3− animals displayed significantly reduced acetate, butyrate and total caecal SCFA production. These results demonstrate that dietary n-3 PUFA regulate gut microbiota homoeostasis whereby n-3 deficiency may induce a state of disturbance. Further studies are warranted to examine whether these microbial and metabolic disturbances are causally related to changes in metabolic health outcomes.
  • An investigation of the effect of rapid slurry chilling on blown pack spoilage of vacuum-packaged beef primals

    Reid, R.; Fanning, S.; Whyte, P.; Kerry, J.; Bolton, D.; Department of Agriculture, Fisheries and Food, Ireland (Wiley, 2017-01-12)
    The aim of this study was to investigate if rapid slurry chilling would retard or prevent blown pack spoilage (BPS) of vacuum-packaged beef primals. Beef primals were inoculated with Clostridium estertheticum subspp. estertheticum (DSMZ 8809), C. estertheticum subspp. laramenise (DSMZ 14864) and C. gasigenes (DSMZ 12272), and vacuum-packaged with and without heat shrinkage (90°C for 3 s). These packs were then subjected to immediate chilling in an ice slurry or using conventional blast chilling systems and stored at 2°C for up to 100 days. The onset and progress of BPS was monitored using the following scale; 0‑no gas bubbles in drip; 1‑gas bubbles in drip; 2‑loss of vacuum; 3‑‘blown’; 4‑presence of sufficient gas inside the packs to produce pack distension and 5‑tightly stretched, ‘overblown’ packs/packs leaking. Rapid slurry chilling (as compared to conventional chilling) did not significantly affect (P > 0.05) the time to the onset or progress of BPS. It was therefore concluded that rapid chilling of vacuum-packaged beef primals, using an ice slurry system, may not be used as a control intervention to prevent or retard blown pack spoilage.
  • Real-time PCR methods for the detection of blown pack spoilage causing Clostridium species; C. estertheticum, C. gasigenes and C. ruminantium

    Reid, Rachael; Burgess, Catherine M.; McCabe, Evonne; Fanning, Séamus; Whyte, Paul; Kerry, Joe; Bolton, Declan; Department of Agriculture, Food and the Marine (Ireland); Teagasc core funding (Elsevier, 2017-11)
    A set of real-time PCR methods for the detection of C. estertheticum, C. gasigenes and C. ruminantium, the causative agents of blown pack spoilage (BPS) in vacuum packaged beef, was developed. Robust validation of the sensitivity and specificity was carried out in the three matrices (beef meat drip, wet environmental swabs and dry environmental swabs) as encountered in our testing laboratory and against Clostridium strains (n = 76) and non-Clostridium strains (n = 36). It was possible to detect 4–5 spores per ml for C. estertheticum, 2 spores per ml for C. gasigenes and 8 spores per ml for C. ruminantium, without the need for enrichment of the samples. This high sensitivity is particularly important for the beef sector, not just for testing spoiled product but also in the early detection of contaminated beef and in validation of sporicidal cleaning procedures for critical pieces of equipment such as the vacuum packaging machine, which have the potential to contaminate large volumes of product.
  • Bifidobacterium breve with α-linolenic acid alters the composition, distribution and transcription factor activity associated with metabolism and absorption of fat

    Patterson, Elaine; Wall, Rebecca; Lisai, Sara; Ross, R. Paul; Dinan, Timothy G.; Cryan, John F.; Fitzgerald, Gerald F.; Banni, Sebastiano; Quigley, Eamonn M.; Shanahan, Fergus; et al. (Springer Science and Business Media LLC, 2017-03-07)
    This study focused on the mechanisms that fatty acid conjugating strains - Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 - influence lipid metabolism when ingested with α-linolenic acid (ALA) enriched diet. Four groups of BALB/c mice received ALA enriched diet (3% (w/w)) either alone or in combination with B. breve NCIMB 702258 or B. breve DPC 6330 (109 CFU/day) or unsupplemented control diet for six weeks. The overall n-3 PUFA score was increased in all groups receiving the ALA enriched diet. Hepatic peroxisomal beta oxidation increased following supplementation of the ALA enriched diet with B. breve (P < 0.05) and so the ability of the strains to produce c9t11 conjugated linoleic acid (CLA) was identified in adipose tissue. Furthermore, a strain specific effect of B. breve NCIMB 702258 was found on the endocannabinoid system (ECS). Liver triglycerides (TAG) were reduced following ALA supplementation, compared with unsupplemented controls (P < 0.01) while intervention with B. breve further reduced liver TAG (P < 0.01), compared with the ALA enriched control. These data indicate that the interactions of the gut microbiota with fatty acid metabolism directly affect host health by modulating n-3 PUFA score and the ECS.
  • Draft Genome Sequences of 25 Listeria monocytogenes Isolates Associated with Human Clinical Listeriosis in Ireland

    O’Callaghan, Amy; Hilliard, Amber; Morgan, Ciara A.; Culligan, Eamonn P.; Leong, Dara; DeLappe, Niall; Hill, Colin; Jordan, Kieran; Cormican, Martin; Gahan, Cormac G. M.; et al. (American Society for Microbiology, 2017-05-11)
    Listeria monocytogenes is a Gram-positive opportunistic pathogen that is the causative agent of listeriosis. Here, we report the draft genome sequences of 25 L. monocytogenes strains isolated from patients with clinical listeriosis in the Republic of Ireland between 2013 and 2015.
  • Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates

    Nogacka, Alicja; Salazar, Nuria; Suárez, Marta; Milani, Christian; Arboleya, Silvia; Solís, Gonzalo; Fernández, Nuria; Alaez, Lidia; Hernández-Barranco, Ana M.; de los Reyes-Gavilán, Clara G.; et al. (Springer Science and Business Media LLC, 2017-08-08)
    Background: Disturbances in the early establishment of the intestinal microbiota may produce important implications for the infant’s health and for the risk of disease later on. Different perinatal conditions may be affecting the development of the gut microbiota. Some of them, such as delivery mode or feeding habits, have been extensively assessed whereas others remain to be studied, being critical to identify their impact on the microbiota and, if any, to minimize it. Antibiotics are among the drugs most frequently used in early life, the use of intrapartum antimicrobial prophylaxis (IAP), present in over 30% of deliveries, being the most frequent source of exposure. However, our knowledge on the effects of IAP on the microbiota establishment is still limited. The aim of the present work was to evaluate the impact of IAP investigating a cohort of 40 full-term vaginally delivered infants born after an uncomplicated pregnancy, 18 of which were born from mothers receiving IAP. Results: Fecal samples were collected at 2, 10, 30, and 90 days of age. We analyzed the composition of the fecal microbiota during the first 3 months of life by 16S rRNA gene sequencing and quantified fecal short chain fatty acids by gas chromatography. The presence of genes for resistance to antibiotics was determined by PCR in the samples from 1-month-old infants. Our results showed an altered pattern of intestinal microbiota establishment in IAP infants during the first weeks of life, with lower relative proportions of Actinobacteria and Bacteroidetes and increased of Preoteobacteria and Firmicutes. A delay in the increase on the levels of acetate was observed in IAP infants. The analyses of specific antibiotic resistance genes showed a higher occurrence of some β-lactamase coding genes in infants whose mothers received IAP. Conclusions: Our results indicate an effect of IAP on the establishing early microbiota during the first months of life, which represent a key moment for the development of the microbiota-induced host homeostasis. Understanding the impact of IAP in the gut microbiota development is essential for developing treatments to minimize it, favoring a proper gut microbiota development in IAP-exposed neonates.
  • Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis

    Moya-Pérez, Angela; Luczynski, Pauline; Renes, Ingrid B.; Wang, Shugui; Borre, Yuliya; Anthony Ryan, C.; Knol, Jan; STANTON, CATHERINE; Dinan, Timothy G.; Cryan, John F.; et al. (Oxford University Press (OUP), 2017-04-01)
    Microbial colonization of the gastrointestinal tract is an essential process that modulates host physiology and immunity. Recently, researchers have begun to understand how and when these microorganisms colonize the gut and the early-life factors that impact their natural ecological establishment. The vertical transmission of maternal microbes to the offspring is a critical factor for host immune and metabolic development. Increasing evidence also points to a role in the wiring of the gut-brain axis. This process may be altered by various factors such as mode of delivery, gestational age at birth, the use of antibiotics in early life, infant feeding, and hygiene practices. In fact, these early exposures that impact the intestinal microbiota have been associated with the development of diseases such as obesity, type 1 diabetes, asthma, allergies, and even neurodevelopmental disorders. The present review summarizes the impact of cesarean birth on the gut microbiome and the health status of the developing infant and discusses possible preventative and restorative strategies to compensate for early-life microbial perturbations.
  • Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites

    Arenas-Gómez, Claudia Marcela; Garcia-Gutierrez, Enriqueta; Escobar, Juan S.; Cotter, Paul D.; Marie Skłodowska-Curie grant; Science Foundation Ireland; Department of Agriculture, Food and the Marine; Enterprise Ireland; European Commission; 847402; et al. (Informa UK Limited, 2022-11-11)
    The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
  • Extraction of plant protein from green leaves: Biomass composition and processing considerations

    Pérez-Vila, Sara; Fenelon, Mark; O'Mahony, James A.; Gómez Gómez-Mascaraque, Laura; Teagasc Walsh Scholarship Programme; 2020032 (Elsevier BV, 2022-12)
    There is an increasing need to explore alternative sources of proteins for food applications. Green leaves contain high levels of the enzyme RuBisCO, representing a source of protein with good functional and nutritional properties. However, the optimal conditions for extraction and purification of RuBisCO at a large scale have not yet been defined. This review discusses the main factors affecting the extraction of proteins from green leaves, from plant composition in terms of protein content and other compounds that affect the yield and quality of extractable protein, to the essential steps and challenges faced during extraction and purification, including considerations for achieving food-grade ingredient status. There are some key factors to consider when developing a protein concentrate for human consumption. The first step is the selection of an optimal raw material; plant tissues are complex matrices that require thorough characterization, including non-protein nitrogen and other undesirable compounds. The effect of the extraction and purification process on functionality, oxidation and proteolytic stability should also be considered. Moreover, the appropriate removal of undesired compounds must be considered to obtain plant protein concentrates suitable for food products.
  • Characteristics of traditional Chinese acidic rice soup (rice-acid) prepared with different fermentation methods

    Liu, Na; Qin, Likang; Pan, Jihong; Miao, Song; National Natural Science Foundation of China; Technology platform and talent team plan of Guizhou; Graduate Research Fund Project of Guizhou; Industry-University-Research Cooperation Project of Guizhou; China Scholarship Council; 32060530; et al. (Elsevier, 2021-11-25)
    Rice-acid, a Chinese traditional acidic rice soup (rice-acid), is widely accepted by consumers due to its unique flavor and anti-oxidation, anti-aging and immunity enhancement functions. This study confirmed that L-lactic acid and malic acid were the main organic acids in rice-acid. Low-temperature rice-acid samples produced by enterprises had the highest signal intensity of sour taste. The total content of free amino acids in different fermented rice-acid samples were in the range of 0.003–0.468 mg/g. 42 key volatile flavor compounds were identified in rice-acid. 8 volatile compounds with a higher contribution to the aroma of rice-acid were respectively acetic acid, 1-octen-3-ol, 2-heptanol, ethyl acetate, propyl propionate, hexanal, nonanal, and 2,3-butanedione. The interaction between lactic acid bacteria (3.00 × 103–7.02 × 106 CFU/mL) and yeasts (5.04 × 104–2.25 × 108 CFU/mL) affected the formation of taste and aroma components in rice-acid. The physicochemical characteristics including titratable acidity, pH, reducing sugars, amino acid nitrogen, gamma-aminobutyric acid showed significant differences between low-temperature fermentation samples and high-temperature fermentation samples. In addition, relationships linking all data through Pearson coefficient correlation were also reported. In summary, the study can be used to improve the quality of rice-acid products.
  • Characterization and gelling properties of a bioactive extract from Ascophyllum nodosum obtained using a chemical-free approach

    Gómez-Mascaraque, Laura G.; Martínez-Sanz, Marta; Martínez-López, Rosalia; Martínez-Abad, Antonio; Panikuttira, Bhavya; López-Rubio, Amparo; Tuohy, Maria G.; Hogan, Sean A.; Brodkorb, Andre; Department of Agriculture, Food and the Marine; et al. (Elsevier, 2021-05-29)
    The bioactivity and gelling properties of a carbohydrate-rich algal extract obtained from locally harvested Ascophyllum nodosum seaweed using a chemical-free approach were investigated for its potential interest in food applications. Physicochemical characterisation and compositional analysis of the extract, using FTIR, biochemical methods and monosaccharide analysis, confirmed the presence of alginates and fucoidans, although the main polysaccharide present in it was laminarin. Significant amounts of phenolic compounds (~9 ​mg phloroglucinol/100 ​mg sample) were also detected. As a result, the extract exhibited good antioxidant activity. It also showed promising prebiotic potential, promoting the growth of beneficial Lactobacillus sp. and Bifidobacteria sp. when compared with commercial prebiotics, but not that of pathogenic bacteria such as E. coli or P. aeruginosa. The gelling properties of the raw extract were explored to optimize hydrogel bead formation by external gelation in CaCl2 solutions. This was enhanced at neutral to alkaline pHs and high extract and CaCl2 concentrations. The mechanical strength, nano- and microstructure of the hydrogel beads prepared under optimised conditions were determined using compression tests, synchrotron small- and wide-angle X-ray scattering (SAXS/WAXS) and scanning electron microscopy (SEM). It was concluded that the raw algal extract at neutral pH had potential for use as a gelling agent, although further enrichment with alginate improved the mechanical properties of the obtained gels. The advantages and disadvantages of applying the non-purified algal extract in comparison with purified carbohydrates are discussed.
  • The potential of non-starter lactic acid bacteria from Cheddar cheese to colonise the gut

    Leeuwendaal, N.; STANTON, CATHERINE; O'Toole, P.W.; Beresford, Tom P.; Teagasc Walsh Fellowship; Science Foundation Ireland; JPI Food Processing for Health; 2014073 (Elsevier, 2021-08-31)
    This study was undertaken to assess the potential of Non-Starter Lactic Acid Bacteria (NSLAB) from Cheddar cheese to survive gastric transit and display probiotic-related traits including bile salt hydrolase activity, the ability to adhere to the gut epithelium and inhibition of enteropathogen binding. Populations of NSLAB, up to 107 CFU/g per cheese were recovered following exposure of cheese to Simulated Stomach Duodenum Passage (SSDP) conditions. A total of 240 isolates were randomly selected from twelve Cheddar cheeses and assessed for probiotic traits. Two strains Lactobacillus paracasei DPC 7150 and Lactobacillus rhamnosus DPC 7102 showed the most probiotic potential. The Lb. paracasei and Lb. rhamnosus strains displayed adhesion rates of 64% and 79%, respectively and inhibited binding of pathogenic Escherichia coli by >20%. This research demonstrates that Cheddar cheese harbours potentially beneficial bacteria, a large portion of which can survive simulated digestion and potentially exhibit health beneficial effects once ingested.
  • Kinetic modelling of ultrasound-assisted extraction of phenolics from cereal brans

    Milićević, Nataša; Kojić, Predrag; Sakač, Marijana; Mišan, Aleksandra; Kojić, Jovana; Perussello, Camila; Banjac, Vojislav; Pojić, Milica; Tiwari, Brijesh K; European Union; et al. (Elsevier, 2021-11-30)
    Cereal brans are by‐products of the milling of cereal grains, which are mainly used as low value ingredients in animal feed. Wheat and oat bran is a rich source of bioactives and phytochemicals, especially phenolic compounds. Within this study, the application of ultrasound (US) technology to assist the extraction of phenolics from oat and wheat bran was investigated (20–45 kHz). Peleg’s mathematical model was used to study the kinetics of ultrasound-assisted extraction (UAE) and subsequent stirring of total phenolic compounds (TPC). The surface morphology of cereal brans after extraction was studied using SEM analysis. The excellent agreement was determined between the values of TPC calculated from Peleg’s mathematical model and actual experimental results. The constant that represents a time required for the initial phenolic concentration to be extracted to one-half of its initial value has been introduced (K1/2). It was shown that the TPC extraction kinetics was dependent only on K1/2 enabling fast kinetics fitting and comparison between extraction rates. Moreover, different values of K1/2 constant could indicate the differences in brans composition and consequently different influence of US pretreatment on these samples.
  • Tannin-rich extracts improve the performance of amidated pectin as an alternative microencapsulation matrix to alginate

    Molino, Silvia; Rufián Henares, José Ángel; Gómez Gómez-Mascaraque, Laura; Teagasc; European Research Commission; University of Granada; N 816303 (Elsevier, 2022-12-31)
    Microencapsulation of tannin extracts through extrusion-gelation method was performed comparing two alternative encapsulation matrices: alginate and amidated pectin. The microstructure of the generated microbeads was studied, as well as their microencapsulation efficiency and release properties. Overall, pectin-based beads performed better than their alginate-based counterparts. This, combined with a greater incorporation of tannins in the feed formulations led to a higher tannin load in the final beads. The best microencapsulation efficiency was given by pectin microbeads loaded with 10% tannin extract (w/w), but the final tannin content could be further increased by adding a 20% (w/w) concentration of the extracts. During a 14-days storage, only a marginal loss of tannins was recorded for pectin-based microbeads. The results reveal that great potential exists in producing pectin-based microbeads in presence of tannins, which allow better loading capacities and improving structural properties, thanks to the interactions between the tannins and the amidated polysaccharide.
  • High-Pressure Processing on Whole and Peeled Potatoes: Influence on Polyphenol Oxidase, Antioxidants, and Glycaemic Indices

    Tsikrika, Konstantina; Muldoon, Aine; O'Brien, Nora, M.; Rai, Dilip; Department of Agriculture, Food and the Marine; 17/F/299 (Multidisciplinary Digital Publishing Institute, 2021-10-13)
    Polyphenol oxidase (PPO) inactivation in five whole and peeled Irish potato cultivars was investigated using high-pressure processing (HPP) at 400 MPa and 600 MPa for 3 min. PPO activity was significantly lower in most of the HPP-treated samples, while the highest PPO inactivation was observed after HPP at 600 MPa. No significant (p > 0.05) changes were observed on the total phenolic content and antioxidant activity of all the HPP-treated potatoes. Regarding individual phenolic acids, chlorogenic acid was decreased significantly (p < 0.05) in all studied varieties with a concomitant increase (p < 0.05) in caffeic and quinic acid. Similarly, ferulic acid was also increased (p < 0.05) in all studied varieties after the HPP treatment, while there was a variation in rutin and 4-coumaric acid levels depending on the cultivar and the sample type. Anthocyanins in the coloured whole potato varieties (i.e., Kerr’s Pink and Rooster), tentatively identified as pelargonidin-O-ferulorylrutinoside-O-hexoside and pelargonidin-O-rutinoside-O-hexoside, also exhibited significantly (p < 0.05) higher levels in the HPP-treated samples as opposed to those untreated. Glycaemic indices of the potatoes treated with HPP did not differ with the corresponding untreated cultivars.
  • Migration of Cefquinome Antibiotic Residues from Milk to Dairy Products

    Di Rocco, Melissa; Scollard, Jonathan; Sayers, Riona; Furey, Ambrose; Danaher, Martin; Jordan, Kieran; Lourenco, Antonio; Department of Agriculture, Food, and the Marine; 13/F/484 (Multidisciplinary Digital Publishing Institute, 2021-11-19)
    The aim of this study was to investigate the distribution of cefquinome in different dairy products during the processing of naturally contaminated milk or spiked milk. The analysis of cefquinome residues in milk, skimmed milk, buttermilk, whey, cream, butter, curd, and cheese samples was performed using a water:acetonitrile solvent extraction and C18 dispersive solid-phase extraction (d-SPE) clean-up, followed by ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC–MS/MS) determination. The target concentration of cefquinome was achieved in the spiked milk (100 µg kg−1). During its processing, the antibiotic migrated primarily with the skimmed milk as opposed to cream (ratios of 3.6:1 and 2.8:1 for experiments A and B, respectively), and with the buttermilk during butter manufacture (ratios of 6.9:1 and 4.6:1), but was equal in the curd and whey during the manufacture of cheese. In the milk collected from treated animals, the measured concentration of cefquinome was considerably high (approx. 5000 µg kg−1). The results obtained from the dairy products were similar to those obtained in the spiked study (ratios of 8.2:1 and 3.1:1 for experiments A and B, respectively, during the separation of skimmed milk and cream; 6.0:1 and 5.0:1 for A and B, respectively, during the separation of buttermilk and butter). However, during cheesemaking, cefquinome migrated with the whey after cutting the curd, with ratios of 0.54:1 and 0.44:1 for experiments A and B, respectively. The difference in the migration of cefquinome between curd and whey in spiked and animal studies is probably due to the different concentration levels in the two different experiments. The results of this study showed that, in dairy products manufactured from milk containing cefquinome residues, the drug migrated primarily with the high-water-containing fractions.
  • Rehydration Properties of Whey Protein Isolate Powders Containing Nanoparticulated Proteins

    Guralnick, Jacob R.; Panthi, Ram R.; Cenini, Valeria L.; Mishra, Vinay S. N.; O’Hagan, Barry M. G.; Crowley, Shane V.; O’Mahony, James A.; Irish Department of Agriculture, Food and the Marine; Department of Agriculture, Environment and Rural Affairs in Northern Ireland; DAIRYDRY 15-F-679 (Multidisciplinary Digital Publishing Institute, 2021-10-27)
    The rehydration properties of original whey protein isolate (WPIC) powder and spray-dried WPI prepared from either unheated (WPIUH) or nanoparticulated WPI solutions were investigated. Nanoparticulation of whey proteins was achieved by subjecting reconstituted WPIC solutions (10% protein, w/w, pH 7.0) to heat treatment at 90 °C for 30 s with no added calcium (WPIH) or with 2.5 mM added calcium (WPIHCa). Powder surface nanostructure and elemental composition were investigated using atomic force microscopy and X-ray photoelectron spectroscopy, followed by dynamic visualisation of wetting and dissolution characteristics using environmental scanning electron microscopy. The surface of powder particles for both WPIUH and WPIC samples generally appeared smooth, while WPIH and WPIHCa displayed micro-wrinkles with more significant deposition of nitrogen and calcium elements. WPIH and WPIHCa exhibited lower wettability and solubility performance than WPIUH and WPIC during microscopic observation. This study demonstrated that heat-induced aggregation of whey proteins, in the presence or absence of added calcium, before drying increases aggregate size, alters the powder surface properties, consequently impairing their wetting characteristics. This study also developed a fundamental understanding of WPI powder obtained from nanoparticulated whey proteins, which could be applied for the development of functional whey-based ingredients in food formulations, such as nanospacers to modulate protein–protein interactions in dairy concentrates.
  • Changes to the Oligosaccharide Profile of Bovine Milk at the Onset of Lactation

    Quinn, Erin M.; O'Callaghan, Tom F.; T. Tobin, John; Murphy, John Paul; Sugrue, Katie; Slattery, Helen; O'Donovan, Michael; Hickey, Rita M.; Teagasc (Multidisciplinary Digital Publishing Institute, 2020-12-01)
    Numerous bioactive components exist in human milk including free oligosaccharides, which represent some of the most important, and provide numerous health benefits to the neonate. Considering the demonstrated value of these compounds, much interest lies in characterising structurally similar oligosaccharides in the dairy industry. In this study, the impacts of days post-parturition and parity of the cows on the oligosaccharide and lactose profiles of their milk were evaluated. Colostrum and milk samples were obtained from 18 cows 1–5 days after parturition. Three distinct phases were identified using multivariate analysis: colostrum (day 0), transitional milk (days 1–2) and mature milk (days 3–5). LS-tetrasaccharide c, lacto-N-neotetraose, disialyllacto-N-tetraose, 3’-sial-N-acetyllactosamine, 3’-sialyllactose, lacto-N-neohexaose and disialyllactose were found to be highly affiliated with colostrum. Notably, levels of lactose were at their lowest concentration in the colostrum and substantially increased 1-day post-parturition. The cow’s parity was also shown to have a significant effect on the oligosaccharide profile, with first lactation cows containing more disialyllacto-N-tetraose, 6’-sialyllactose and LS-tetrasaccharide compared to cows in their second or third parity. Overall, this study identifies key changes in oligosaccharide and lactose content that clearly distinguish colostrum from transitional and mature milk and may facilitate the collection of specific streams with divergent biological functions.

View more