• Effect of ultrasound on physicochemical properties of emulsion stabilized by fish myofibrillar protein and xanthan gum

      Xiong, Yao; Li, Qianru; Miao, Song; Zhang, Yi; Zheng, Baodong; Zhang, Longtao; Fujian Agriculture and Forestry University; Fujian Provincial Foreign Cooperation Project; Fujian Provincial Science and Technology Program of Regional Development Project; National Natural Science Foundation of China; et al. (Elsevier, 2019-04-30)
      To investigate the effects ultrasound (20 kHz, 150–600 W) on physicochemical properties of emulsion stabilized by myofibrillar protein (MP) and xanthan gum (XG), the emulsions were characterized by Fourier transform infrared (FT-IR) spectroscopy, ζ-potential, particle size, rheology, surface tension, and confocal laser scanning microscopy (CLSM). FT-IR spectra confirmed the complexation of MP and XG, and ultrasound did not change the functional groups in the complexes. The emulsion treated at 300 W showed the best stability, with the lowest particle size, the lowest surface tension (26.7 mNm−1) and the largest ζ-potential absolute value (25.4 mV), that were confirmed in the CLSM photos. Ultrasound reduced the apparent viscosity of the MP-XG emulsions, and the changes of particle size were manifested in flow properties. Generally, ultrasound was successfully applied to improve the physical stability of MP-XG emulsion, which could be used as a novel delivery system for functional material.
    • The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel

      Zheng, Meixia; Lian, Fengli; Xiong, Yao; Liu, Bo; Zhu, Yujing; Miao, Song; Zhang, Longtao; Zheng, Baodong; International Science and Technology Cooperation and Exchange Program of Fujian Agriculture and Forestry University; National Natural Science Foundation of China; et al. (Elsevier, 2018-08-21)
      To improve the thermal stability and adsorption performance, xanthan gum was modified with acrylamide and trimethylolpropane triglycidyl ether (TTE). The modified xanthan gum (XGTTE) was characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractogram (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The characteristic peaks at 3449, 1655, 1611 and 1420 cm−1 in the FT-IR confirm the modification. The XGTTE crystal grew well upon addition of TTE. The XRD and DSC data revealed that the XGTTE enhanced its thermal stability. Analysis of SEM revealed that the grafting introduced major changes on the microstructure making it porous and resulting in the adsorption of crystal violet (CV) with flocculation. The CV adsorption capacity of the hydrogel with different dosages of TTE (XGTTE2, XGTTE3, XGTTE4, XGTTE5 and XGTTE6) were between 28.13 with 35.12 mg/g. In addition, the adsorption capacity, thermal stability, and swelling property of XGTTE4 were the best.