• Effect of Diet on the Vitamin B Profile of Bovine Milk-Based Protein Ingredients

      Magan, Jonathan B.; O’Callaghan, Tom F.; Zheng, Jiamin; Zhang, Lun; Mandal, Rupasri; Hennessy, Deirdre; Fenelon, Mark; Wishart, David S.; Kelly, Alan L.; McCarthy, Noel; et al. (MDPI AG, 2020-05-04)
      The influence of diet on the water-soluble vitamin composition of skim milk powder and whey protein ingredients produced from the milk of cows fed pasture or concentrate-based diets was examined. Fifty-one Holstein-Friesian cows were randomly assigned into three diets (n = 17) consisting of outdoor grazing of perennial ryegrass (GRS), perennial ryegrass/white clover (CLV), or indoor feeding of total mixed ration (TMR) for an entire lactation. Raw mid-lactation milk from each group was processed into skim milk powder and further processed to yield micellar casein whey and acid whey. Sweet whey was also produced by renneting of pasteurised whole milk from each system. The water-soluble vitamin profile of each sample was analysed using a combination of direct injection mass spectrometry and reverse-phase liquid chromatography–mass spectrometry. Vitamin B3 and B3-amide concentrations were significantly higher (p < 0.05) in TMR-derived samples than in those from CLV and GRS, respectively. Vitamin B1, B2, and B7 concentrations were significantly higher in GRS and CLV-derived samples than those from TMR. Significant differences in vitamins B1, B2, and B3-amide were also observed between protein ingredient types. This study indicates that bovine feeding systems have a significant effect on B vitamin composition across a range of protein ingredient types.
    • Impact of Bovine Diet on Metabolomic Profile of Skim Milk and Whey Protein Ingredients

      Magan, Jonathan B.; O’Callaghan, Tom F.; Zheng, Jiamin; Zhang, Lun; Mandal, Rupasri; Hennessy, Deirdre; Fenelon, Mark A.; Wishart, David S.; Kelly, Alan L.; McCarthy, Noel A. (MDPI AG, 2019-12-17)
      The influence of bovine diet on the metabolome of reconstituted skim milk powder (SMP) and protein ingredients produced from the milk of cows fed on pasture or concentrate-based diets was investigated. Cows were randomly assigned to diets consisting of perennial ryegrass only (GRS), perennial ryegrass/white clover sward (CLV), or indoor total mixed ration (TMR) for an entire lactation. Raw milk obtained from each group was processed at pilot scale, to produce SMP and sweet whey, and SMP was further processed at laboratory scale, to yield ideal whey and acid whey. The total amino acid composition and metabolome of each sample were analyzed, using high-performance cation exchange and a targeted combination of direct-injection mass spectrometry and reverse-phase liquid chromatography–tandem mass spectrometry (LC–MS/MS), respectively. The nitrogen composition of the products from each of the diets was similar, with one exception being the significantly higher nonprotein nitrogen content in TMR-derived skim milk powder than that from the GRS system. Total amino acid analysis showed significantly higher concentrations of glycine in GRS- and CLV-derived sweet whey and acid whey than in those from TMR. The cysteine contents of CLV-derived ideal whey and acid whey were significantly higher than for TMR, while the valine content of GRS-derived acid whey was significantly higher than TMR. The phenylalanine content of GRS-derived ideal whey was significantly higher than that from CLV. Metabolomic analysis showed significantly higher concentrations of the metabolites glutamine, valine, and phosphocreatine in each ingredient type derived from TMR than those from GRS or CLV, while the serine content of each GRS-derived ingredient type was significantly higher than that in TMR-derived ingredients. These results demonstrate that the type of bovine feeding system used can have a significant effect on the amino acid composition and metabolome of skim milk and whey powders and may aid in the selection of raw materials for product manufacture, while the clear separation between the samples gives further evidence for distinguishing milk products produced from different feeding systems based on LC–MS/MS
    • Short communication: Multi-component interactions causing solidification during industrial-scale manufacture of pre-crystallized acid whey powders

      Drapala, Kamil P.; Murphy, Kevin M.; Ho, Quang Tri; Crowley, Shane V.; Mulcahy, Shane; McCarthy, Noel; O'Mahony, James A.; Technology Centres Programme; TC/2014/0016 (Elsevier, 2018-10-03)
      Acid whey (AW) is the liquid co-product arising from acid-induced precipitation of casein from skim milk. Further processing of AW is often challenging due to its high mineral content, which can promote aggregation of whey proteins, which contributes to high viscosity of the liquid concentrate during subsequent lactose crystallization and drying steps. This study focuses on mineral precipitation, protein aggregation, and lactose crystallization in liquid AW concentrates (∼55% total solids), and on the microstructure of the final powders from 2 independent industrial-scale trials. These AW concentrates were observed to solidify either during processing or during storage (24 h) of pre-crystallized concentrate. The more rapid solidification in the former was associated with a greater extent of lactose crystallization and a higher ash-to-protein ratio in that concentrate. Confocal laser scanning microscopy analysis indicated the presence of a loose network of protein aggregates (≤10 µm) and lactose crystals (100–300 µm) distributed throughout the solidified AW concentrate. Mineral-based precipitate was also evident, using scanning electron microscopy, at the surface of AW powder particles, indicating the formation of insoluble calcium phosphate during processing. These results provide new information on the composition- and process-dependent physicochemical changes that are useful in designing and optimizing processes for AW.