• Dairy food structures influence the rates of nutrient digestion through different in vitro gastric behaviour

      Mulet-Cabero, Ana-Isabel; Rigby, Neil M.; Brodkorb, Andre; Mackie, Alan; Irish Dairy Levy Research Trust; BBSRC UK; Teagasc Walsh Fellowship Programme; BB/J004545/1 (Elsevier, 31/12/2016)
      The purpose of this study was to investigate in vitro the extent to which specific food structures alter gastric behaviour and could therefore impact on nutrient delivery and digestion in the small intestine. Results obtained from a specifically developed gastric digestion model, were compared to results from a previous human study on the same foods. The semi-dynamic model could simulate the main gastric dynamics including gradual acidification, lipolysis, proteolysis and emptying. Two dairy-based foods with the same caloric content but different structure were studied. The semi-solid meal comprised a mixture of cheese and yogurt and the liquid meal was an oil in water emulsion stabilised by milk proteins. Our findings showed similar gastric behaviour to that seen previously in vivo. Gastric behaviour was affected by the initial structure with creaming and sedimentation observed in the case of liquid and semi-solid samples, respectively. Lipid and protein digestion profiles showed clear differences in the amount of nutrients reaching the simulated small intestine and, consequently, the likely bioaccessibility after digestion. The semi-solid sample generated higher nutrient released into the small intestine at an early stage of digestion whereas nutrient accessibility from liquid sample was delayed due to the formation of a cream layer in the gastric phase. This shows the strong effect of the matrix on gastric behaviour, proteolysis and lipolysis, which explains the differences in physiological responses seen previously with these systems in terms of fullness and satiety.
    • A degenerate PCR-based strategy as a means of identifying homologues of aminoglycoside and ß-lactam resistance genes in the gut microbiota

      Fouhy, Fiona; Ross, R Paul; Fitzgerald, Gerald F; Stanton, Catherine; Cotter, Paul D.; Irish Research Council; Teagasc Walsh Fellowship Programme; Science Foundation Ireland; 11/PI/1137 (Biomed Central, 05/02/2014)
      Background: The potential for the human gut microbiota to serve as a reservoir for antibiotic resistance genes has been the subject of recent discussion. However, this has yet to be investigated using a rapid PCR-based approach. In light of this, here we aim to determine if degenerate PCR primers can detect aminoglycoside and β-lactam resistance genes in the gut microbiota of healthy adults, without the need for an initial culture-based screen for resistant isolates. In doing so, we would determine if the gut microbiota of healthy adults, lacking recent antibiotic exposure, is a reservoir for resistance genes. Results: The strategy employed resulted in the identification of numerous aminoglycoside (acetylation, adenylation and phosphorylation) and β-lactam (including bla OXA, bla TEM, bla SHV and bla CTX-M) resistance gene homologues. On the basis of homology, it would appear that these genes originated from different bacterial taxa, with members of the Enterobacteriaceae being a particularly rich source. The results demonstrate that, even in the absence of recent antibiotic exposure, the human gut microbiota is a considerable reservoir for antibiotic resistance genes. Conclusions: This study has demonstrated that the gut can be a significant source of aminoglycoside and β-lactam resistance genes, even in the absence of recent antibiotic exposure. The results also demonstrate that PCR-based approaches can be successfully applied to detect antibiotic resistance genes in the human gut microbiota, without the need to isolate resistant strains. This approach could also be used to rapidly screen other complex environments for target genes.
    • Detection and characterisation of Complement protein activity in bovine milk by bactericidal sequestration assay

      Maye, Susan; Stanton, Catherine; Fitzgerald, Gerald F.; Kelly, Philip M.; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine (Cambridge University Press for the Institute of Food Research and the Hannah Research Institute, 29/06/2015)
      While the Complement protein system in human milk is well characterised, there is little information on its presence and activity in bovine milk. Complement forms part of the innate immune system, hence the importance of its contribution during milk ingestion to the overall defences of the neonate. A bactericidal sequestration assay, featuring a Complement sensitive strain, Escherichia coli 0111, originally used to characterise Complement activity in human milk was successfully applied to freshly drawn bovine milk samples, thus, providing an opportunity to compare Complement activities in both human and bovine milks. Although not identical in response, the levels of Complement activity in bovine milk were found to be closely comparable with that of human milk. Differential counts of Esch. coli 0111 after 2 h incubation were 6·20 and 6·06 log CFU/ml, for raw bovine and human milks, respectively – the lower value representing a stronger Complement response. Exposing bovine milk to a range of thermal treatments e.g. 42, 45, 65, 72, 85 or 95 °C for 10 min, progressively inhibited Complement activity by increasing temperature, thus confirming the heat labile nature of this immune protein system. Low level Complement activity was found, however, in 65 and 72 °C heat treated samples and in retailed pasteurised milk which highlights the outer limit to which high temperature, short time (HTST) industrial thermal processes should be applied if retention of activity is a priority. Concentration of Complement in the fat phase was evident following cream separation, and this was also reflected in the further loss of activity recorded in low fat variants of retailed pasteurised milk. Laboratory-based churning of the cream during simulated buttermaking generated an aqueous (buttermilk) phase with higher levels of Complement activity than the fat phase, thus pointing to a likely association with the milk fat globule membrane (MFGM) layer.
    • Detection and Enumeration of Spore-Forming Bacteria in Powdered Dairy Products

      McHugh, Aoife J.; Feehily, Conor; Hill, Colin; Cotter, Paul D.; Department of Agriculture, Food and the Marine, Ireland (Frontiers, 31/01/2017)
      With the abolition of milk quotas in the European Union in 2015, several member states including Ireland, Luxembourg, and Belgium have seen year on year bi-monthly milk deliveries to dairies increase by up to 35%. Milk production has also increased outside of Europe in the past number of years. Unsurprisingly, there has been a corresponding increased focus on the production of dried milk products for improved shelf life. These powders are used in a wide variety of products, including confectionery, infant formula, sports dietary supplements and supplements for health recovery. To ensure quality and safety standards in the dairy sector, strict controls are in place with respect to the acceptable quantity and species of microorganisms present in these products. A particular emphasis on spore-forming bacteria is necessary due to their inherent ability to survive extreme processing conditions. Traditional microbiological detection methods used in industry have limitations in terms of time, efficiency, accuracy, and sensitivity. The following review will explore the common spore-forming bacterial contaminants of milk powders, will review the guidelines with respect to the acceptable limits of these microorganisms and will provide an insight into recent advances in methods for detecting these microbes. The various advantages and limitations with respect to the application of these diagnostics approaches for dairy food will be provided. It is anticipated that the optimization and application of these methods in appropriate ways can ensure that the enhanced pressures associated with increased production will not result in any lessening of safety and quality standards.
    • Detection and quantification of apple adulteration in diluted and sulphited strawberry and raspberry purées using visible and near infrared spectroscopy

      Downey, Gerard; Kelly, J. Daniel; Department of Agriculture, Food and the Marine (American Chemical Society, 2003)
      Adulteration of sulphited strawberry and raspberry purées by apple is a commercial problem. Strawberry (n=31) and raspberry (n=30) purées were prepared from Irish-grown fruit and adulterated at levels of 10-75% w/w using cooking apples. Visible and near infrared transflectance spectra were recorded using a 0.1 mm sample thickness. Classification and quantification models were developed using raw and scatter-corrected and/or derivatised spectral data. Classification as pure strawberry or raspberry was attempted using soft independent modelling of class analogy (SIMCA). The best models used spectral data in the wavelength ranges 400-1098 nm (strawberry) and 750-1098 nm (raspberry) and produced total correct classification rates of 75% (strawberry) and 95% (raspberry). Quantification of apple content was performed using partial least squares (PLS) regression. Lowest predictive errors obtained were 11.3% (raspberry) and 9.0% (strawberry). These results were obtained using spectral data in the wavelength ranges 400-1880 and 1100-1880 nm respectively. These results suggest minimum detection levels of apple in soft fruit purées of approximately 25% and 20% w/w for raspberry and strawberry respectively.
    • Detection of abnormal recordings in Irish milk recorded data

      Quinn-Whelton, N.; Killen, L.; Guinee, Timothy P.; Buckley, Frank (Teagasc, Oak Park, Carlow, Ireland, 2007)
      The objective of this study was to detect abnormal recordings of milk yield, fat concentration and protein concentration in Irish milk-recorded data. The data consisted of 14,956 records from both commercial and experimental herds with 92% of the recordings recorded manually and the remainder recorded electronically. The method used in this paper was a modified version of the method employed by the Animal Improvement Programs Laboratory in Maryland, USA and conformed with the guidelines outlined by the International Committee of Animal Recording. The results illustrate the effectiveness of detecting abnormal recordings in Irish milk records. The method described in this paper, defines the upper and lower limits for each production trait and these limits along with the slope parameters were used to determine if a recording was abnormal or not. Three percent of milk yield recordings, 5% of fat concentration recordings and less than 1% of protein concentration recordings were found to be abnormal. The proportion of values declared abnormal in manually recorded and electronically recorded data were examined and found to be significantly different for fat concentration.
    • Detection of adulteration in fresh and frozen beefburger products by beef offal using mid-infrared ATR spectroscopy and multivariate data analysis

      Zhao, Ming; Downey, Gerard; O'Donnell, C.P.; Teagasc Walsh Fellowship Programme; Food Safety Authority of Ireland (Elsevier, 17/10/2013)
      A series of authentic and offal-adulterated beefburger samples was produced. Authentic product (36 samples) comprised either only lean meat and fat (higher quality beefburgers) or lean meat, fat, rusk and water (lower quality product). Offal adulterants comprised heart, liver, kidney and lung. Adulterated formulations (46 samples) were produced using a D-optimal experimental design. Fresh and frozen-then-thawed samples were modelled, separately and in combination, by a classification (partial least squares discriminant analysis) and class-modelling (soft independent modelling of class analogy) approach. With the former, 100% correct classification accuracies were obtained separately for fresh and frozen-then-thawed material. Separate class-models for fresh and frozen-then-thawed samples exhibited high sensitivities (0.94 to 1.0) but lower specificities (0.33 – 0.80 for fresh samples and 0.41 – 0.87 for frozen-then-thawed samples). When fresh and frozen-then-thawed samples were modelled together, sensitivity remained 1.0 but specificity ranged from 0.29 to 0.91. Results indicate a role for this technique in monitoring beefburger compliance to label.
    • Detection of banned nitrofuran metabolites in animal plasma samples using UHPLC–MS/MS

      Radovnikovic, Anita; Moloney, Mary; Byrne, Patrick; Danaher, Martin (Elsevier, 2010-12-07)
      The use of nitrofurans as veterinary drugs in food-producing animals has been banned in the EU since the 1990s. Monitoring programs in the EU are based on the detection of protein-bound metabolites after slaughter. An UHPLC–MS/MS method was developed and validated for pre slaughter determination of four nitrofuran metabolites (AHD, AOZ, SEM, AMOZ) in animal plasma (bovine, ovine, equine and porcine). This method is proposed as an alternative method for on-farm surveillance. Plasma samples were derivatised with 2-nitrobenzaldehyde and subsequently extracted with organic solvent. Extracts were concentrated and then analysed by UHPLC–MS/MS. The method was validated according to Commission Decision 2002/657/EC. Inter-species recovery for AHD, AOZ, SEM and AMOZ was 72, 74, 57 and 71%, respectively. Decision limits (CC ) were calculated from within laboratory reproducibility experiments to be 0.070, 0.059, 0.071 and 0.054 gkg−1, respectively. In addition, the assay was applied to incurred plasma samples taken from pigs treated with furazolidone.
    • Detection of benzimidazole carbamates and amino metabolites in liver by surface plasmon resonance-biosensor

      Keegan, Jemma; O'Kennedy, Richard; Crooks, Steven; Elliot, Christopher; Brandon, David; Danaher, Martin; Department of Agriculture, Food and the Marine, Ireland; 05/R&D/TN/355 (Elsevier, 14/01/2011)
      Two surface plasmon resonance (SPR) biosensor screening assays were developed and validated to detect 11 benzimidazole carbamate (BZT) and four amino-benzimidazole veterinary drug residues in liver tissue. The assays used polyclonal antibodies, raised in sheep, to detect BZTs and amino-benzimidazoles. A modified Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) extraction method was developed to isolate benzimidazole carbamate residues. Liver samples were extracted using an acetonitrile extraction method. BZTs were purified by dispersive solid phase extraction (d-SPE) using C18 sorbent. Residues of amino-benzimidazoles were effectively cleaned-up using a simple cyclohexane defatting step. The assays were validated in accordance with the performance criteria described in 2002/657/EC. The BZT assay limit of detection was calculated to be 32 μg kg−1, the detection capability (CCβ) was determined to be 50 μg kg−1 and the mean recovery of analytes was in the range 77–132%. The amino-benzimidazole assay limit of detection was determined to be 41 μg kg−1, the CCβ was determined to be 75 μg kg−1 and analyte recovery was in the range 103–116%. Biosensor assay performance was tested by analysing liver tissue from animals treated with benzimidazole drugs and comparing the results with an ultra high performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS) confirmatory method. All non-compliant samples were identified using the biosensor assays.
    • Detection of offal adulteration in beefburgers using near infrared reflectance spectroscopy and multivariate modelling

      Zhao, Ming; O'Donnell, Colm P.; Downey, Gerard; Food Safety Authority of Ireland; Teagasc Walsh Fellowship Programme (IM Publications, 2013)
      The main aim of this study was to develop a rapid and reliable tool using near infrared (NIR) reflectance spectroscopy to confirm beefburger authenticity in the context of offal (kidney, liver, heart and lung) adulteration. An experimental design was used to develop beefburger formulations to simultaneously maximise the variable space describing offal-adulterated samples and minimise the number of experiments required. Authentic (n = 36) and adulterated (n = 46) beefburger samples were produced using these formulations. Classification models (partial least squares discriminant analysis, PLS1-DA) and class-modelling tools (soft independent modelling of class analogy, SIMCA) were developed using raw and pre-treated NIR reflectance spectra (850-1098 nm wavelength range) to detect authentic and adulterated beefburgers in (1) fresh, (2) frozen-then-thawed and (3) fresh or frozen-then-thawed states. In the case of authentic samples, the best PLS1-DA models achieved 100% correct classification for fresh, frozen-then-thawed and fresh or frozen-then-thawed samples. SIMCA models correctly identified all the fresh samples but not all the frozen-then-thawed and fresh or frozen-then-thawed samples. For the adulterated samples, PLS1-DA models correctly classified 95.5% of fresh, 91.3% of frozen-then-thawed and 88.9% of fresh or frozen-then-thawed beefburgers. SIMCA models exhibited specificity values of 1 for both fresh and frozen-then-thawed samples, 0.99 for fresh or frozen-then-thawed samples; sensitivity values of 1, 0.88 and 0.97 were obtained for fresh, frozen-then-thawed and fresh or frozen-then-thawed products respectively. Quantitative models (PLS1 regression) using both 850-1098 nm and 1100-2498 nm wavelength ranges were developed to quantify (1) offal adulteration and (2) added fat in adulterated beefburgers, both fresh and frozen-then-thawed. Models predicted added fat in fresh samples with acceptable accuracy (RMSECV = 2.0; RPD = 5.9); usefully-accurate predictions of added fat in frozen-then-thawed samples were not obtained nor was prediction of total offal possible in either sample form.
    • Detection of presumptive Bacillus cereus in the Irish dairy farm environment

      O'Connell, A.; Lawton, E.M.; Leong, Dara; Cotter, Paul D; Gleeson, David; Guinane, Catriona M.; Teagasc Walsh Fellowship Programme (Teagasc (Agriculture and Food Development Authority), Ireland, 30/01/2016)
      The objective of the study was to isolate potential Bacillus cereus sensu lato (B. cereus s.l.) from a range of farm environments. Samples of tap water, milking equipment rinse water, milk sediment filter, grass, soil and bulk tank milk were collected from 63 farms. In addition, milk liners were swabbed at the start and the end of milking, and swabs were taken from cows’ teats prior to milking. The samples were plated on mannitol egg yolk polymyxin agar (MYP) and presumptive B. cereus s.l. colonies were isolated and stored in nutrient broth with 20% glycerol and frozen at -80 °C. These isolates were then plated on chromogenic medium (BACARA) and colonies identified as presumptive B. cereus s.l. on this medium were subjected to 16S ribosomal RNA (rRNA) sequencing. Of the 507 isolates presumed to be B. cereus s.l. on the basis of growth on MYP, only 177 showed growth typical of B. cereus s.l. on BACARA agar. The use of 16S rRNA sequencing to identify isolates that grew on BACARA confirmed that the majority of isolates belonged to B. cereus s.l. A total of 81 of the 98 isolates sequenced were tentatively identified as presumptive B. cereus s.l. Pulsed-field gel electrophoresis was carried out on milk and soil isolates from seven farms that were identified as having presumptive B. cereus s.l. No pulsotype was shared by isolates from soil and milk on the same farm. Presumptive B. cereus s.l. was widely distributed within the dairy farm environment.
    • Determination and Occurrence of Phenoxyacetic Acid Herbicides and Their Transformation Products in Groundwater Using Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry

      McManus, Sarah-Louise; Moloney, Mary; Richards, Karl G.; Coxon, Catherine E.; Danaher, Martin; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine, Ireland (MDPI AG., Basel, Switzerland, 10/12/2014)
      A sensitive method was developed and validated for ten phenoxyacetic acid herbicides, six of their main transformation products (TPs) and two benzonitrile TPs in groundwater. The parent compounds mecoprop, mecoprop-p, 2,4-D, dicamba, MCPA, triclopyr, fluroxypr, bromoxynil, bentazone, and 2,3,6-trichlorobenzoic acid (TBA) are included and a selection of their main TPs: phenoxyacetic acid (PAC), 2,4,5-trichloro-phenol (TCP), 4-chloro-2-methylphenol (4C2MP), 2,4-dichlorophenol (DCP), 3,5,6-trichloro-2-pyridinol (T2P), and 3,5-dibromo-4-hydroxybenzoic acid (BrAC), as well as the dichlobenil TPs 2,6-dichlorobenzamide (BAM) and 3,5-dichlorobenzoic acid (DBA) which have never before been determined in Irish groundwater. Water samples were analysed using an efficient ultra-high performance liquid chromatography (UHPLC) method in an 11.9 min separation time prior to detection by tandem mass spectrometry (MS/MS). The limit of detection (LOD) of the method ranged between 0.00008 and 0.0047 µg·L−1 for the 18 analytes. All compounds could be detected below the permitted limits of 0.1 µg·L−1 allowed in the European Union (EU) drinking water legislation [1]. The method was validated according to EU protocols laid out in SANCO/10232/2006 with recoveries ranging between 71% and 118% at the spiked concentration level of 0.06 µg·L−1. The method was successfully applied to 42 groundwater samples collected across several locations in Ireland in March 2012 to reveal that the TPs PAC and 4C2MP were detected just as often as their parent active ingredients (a.i.) in groundwater.
    • Determination of exposed sulphydryl groups in heated β-lactoglobulin A using IAEDANS and mass spectrometry

      Kehoe, Joseph James; Brodkorb, Andre; Molle, Daniel; Yokoyama, Emilie; Famelart, Marie-Helene; Bouhallab, Said; Morris, Edwin R; Croguennec, Thomas; Teagasc Walsh Fellowship Programme; Enterprise Ireland; Department of Agriculture, Food and the Marine; French Ministry for Foreign Affairs (American Chemical Society, 25/07/2007)
      This paper takes a new approach to determining which sulfhydryl groups are exposed during the heat denaturation of bovine β-lactoglobulin A. The sulfhydryl groups exposed after heating were blocked with 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS). The results show that IAEDANS is a suitable blocking agent, and its absorbance at 336 nm enabled the quantification of exposed sulfhydryl groups in a mixture of protein species by gel permeation chromatography. Combined with the specific fragmentation of bound IAEDANS by matrix-assisted laser desorption ionization (MALDI) MS/MS in negative ionization mode, this facilitated the identification of peptides that contained blocked cysteines after enzymatic digestion of the protein. During MALDI MS/MS of the peptides, in positive ionization mode, the IAEDANS molecule remained bound to the cysteines, making it possible to identify exactly which cysteine had been exposed after heating. In β-lactoglobulin A it was found that cysteine 66 and cysteine 160 were predominantly exposed regardless of the length of exposure to heat.
    • Determination of Listeria monocytogenes numbers at less than 10 cfu/g

      Hunt, K.; Vacelet, M.; Jordan, Kieran; Department of Agriculture, Food and the Marine, Ireland; Dairy Processing Technology Centre; 11/F/008; TC 2014 0016. (Teagasc (Agriculture and Food Development Authority), Ireland, 09/06/2017)
      Listeria monocytogenes is a foodborne pathogen that causes a relatively rare foodborne disease called listeriosis, with a high mortality rate of 20%-30% and an undefined dose response. Current European Union regulations permit up to 100 colony-forming units (cfu)/g in food at the end of its shelf life, where the food has been shown not to support the growth of this pathogenic bacterium. Therefore, enumeration of L. monocytogenes at low numbers in food is important. The objective of this study was to reduce the detection limit of L. monocytogenes in food by a factor of 10. The International Organisation for Standardisation (ISO) 11290-2 method for enumeration of L. monocytogenes in food recommends spreading 0.1 mL of a 1:10 dilution of the food on the surface of an agar plate (detection limit 100 cfu/g), or 1.0 mL spread in equal parts on the surface of three agar plates (detection limit: 10 cfu/g). The pour-plate method (using 1 or 10 mL of an appropriate dilution) was compared to the spread-plate method using the ISO-approved chromogenic medium Agar Listeria according to Ottaviani and Agosti (ALOA). Using the pour-plate method, the colony morphology and halo formation were similar to the spread-plate method from pure cultures and inoculated foods. Using the pour-plate method in a 140 mm Petri dish, 10 mL of a 1:10 dilution of food allowed determination of numbers as low as 1 cfu/g. Applying this method, L. monocytogenes in naturally contaminated food samples were enumerated at numbers as low as 1-9 cfu/g.
    • Determining the Prevalence and Seasonality of Fasciola hepatica in Pasture-based Dairy herds in Ireland using a Bulk Tank Milk ELISA

      Bloemhoff, Yris; Forbes, Andrew; Danaher, Martin; Good, Barbara; Morgan, Eric; Mulcahy, Grace; Sekiya, Mary; Sayers, Riona; Irish Dairy Levy Research Trust; Merial (Biomed Central, 09/07/2015)
      Background Fasciola hepatica is a helminth parasite of global importance in livestock, with major economic impact. However information on F. hepatica infections in Irish pasture-based dairy herds is limited. Therefore this study was conducted in order to determine the prevalence, seasonality and management factors associated with F. hepatica. A total of 319 Irish dairy herds were selected for this study. Bulk tank milk (BTM) samples were collected from 290 dairy farms on a quarter year basis, while from a further 29 dairy farms BTM samples were collected on a monthly basis to provide a more detailed pattern of F. hepatica exposure in Irish herds. BTM samples were analysed using a commercially available F. hepatica antibody detection ELISA. Furthermore, within-herd prevalence of F. hepatica was assessed in a subset of these 29 herds (n = 17); both individual serum samples and bulk tank milk samples were collected. Results A within-herd prevalence of ≤ 50 % was found for herds with negative bulk tank milk samples. The mean prevalence of the 290 study herds was 75.4 % (Range 52 %–75.1 %), with the highest prevalence being observed in November (75.1 %). The seasonal pattern of F. hepatica shows elevated antibodies as the grazing season progressed, reaching a peak in January. A significant association was found between F. hepatica and age at first calving. Conclusion This study demonstrates that F. hepatica is present in a large proportion of Irish dairy herds and provides a basis on which control practices, particularly in adult dairy cows, can be reviewed.
    • Developing sous vide/freezing systems for ready-meal components

      Tansey, Fergal; Gormley, Ronan T.; Carbonell, Serge; Oliviera, Jorge; Bourke, Paula; O'Beirne, David; Department of Agriculture, Food and the Marine (Teagasc, 2005-04)
      Sous vide cooking involves sealing raw or par-cooked food in a vacuumised laminated plastic pouch or container, cooking by controlled heating, rapid chilling and then re-heating for consumption. The chilled storage period is up to 21 days at 0 to 3oC. The recommended thermal process for sous vide products is 90oC for 10min or its time-temperature equivalent. Concerns about the safety of sous vide products, mainly due to the potential for temperature abuse in the chill chain, has prevented the widespread use of this technology. The role of the current project, therefore, was to investigate sous vide cooking followed by freezing, as a safe alternative to sous vide/chilling for 10 ready-meal components i.e. carbohydrates (potatoes, pasta, rice), vegetables (carrots, broccoli) and muscle foods (salmon, cod, chicken, beef and lamb).
    • Developing Sous Vide/Freezing Systems for Ready-Meal omponents

      Tansey, Fergal; Gormley, Ronan T.; Carbonell, Serge; Oliveira, Jorge; Bourke, Paula; O’Beirne, David (Teagasc, 01/04/2005)
      Sous vide cooking involves sealing raw or par-cooked food in a vacuumised laminated plastic pouch or container, cooking by controlled heating, rapid chilling and then re-heating for consumption. The chilled storage period is up to 21 days at 0 to 3oC. The recommended thermal process for sous vide products is 90oC for 10min or its time-temperature equivalent. Concerns about the safety of sous vide products, mainly due to the potential for temperature abuse in the chill chain, has prevented the widespread use of this technology. The role of the current project, therefore, was to investigate sous vide cooking followed by freezing, as a safe alternative to sous vide/chilling for 10 ready-meal components i.e. carbohydrates (potatoes, pasta, rice), vegetables (carrots, broccoli) and muscle foods (salmon, cod, chicken, beef and lamb).
    • The Development and/or Validation of Novel Intervention Technologies to Assure Meat Food Safety

      Bolton, Declan J.; Byrne, Brian; Lyng, James; Downey, Gerard; Department of Agriculture, Food and the Marine, Ireland; Food Safety Authority of Ireland (Teagasc, 01/02/2007)
      This project was undertaken to fill some of the knowledge gaps in meat food safety from farm to fork. The data provide the scientific basis for a clean sheep policy to reduce the impact of fleece as a source of microbial contamination on ovine carcasses at the beginning of the slaughter process. At the other end of the slaughter-line, a polyurethane sponge swabbing technology was developed for ovine and bovine carcass sampling as required in 2001/471/EC and the new European Commission Hygiene Regulations. At the processing stages, studies were undertaken to determine the most effective media for the recovery and culture of Cl. perfringens cells and spores; the results were then applied to thermal inactivation studies on these bacteria. Thermal resistance data were also obtained for Bacillus cereus and a radio frequency cook for meat products was validated in terms of the destruction of Cl. perfringens and B. cereus cells and spores. Finally, an aerobiology study investigated the effectiveness of a range on measures to prevent air acting as a vector for bacterial dispersion in a meat processing plant.
    • The development and/or validation of novel intervention technologies to assure meat food safety

      Bolton, Declan J.; Byrne, Brian; Lyng, James G. (Teagasc, 2007-02)
      This project was undertaken to fill some of the knowledge gaps in meat food safety from farm to fork. The data provide the scientific basis for a clean sheep policy to reduce the impact of fleece as a source of microbial contamination on ovine carcasses at the beginning of the slaughter process. At the other end of the slaughter-line, a polyurethane sponge swabbing technology was developed for ovine and bovine carcass sampling as required in 2001/471/EC and the new European Commission Hygiene Regulations. At the processing stages, studies were undertaken to determine the most effective media for the recovery and culture of Cl. perfringens cells and spores; the results were then applied to thermal inactivation studies on these bacteria. Thermal resistance data were also obtained for Bacillus cereus and a radio frequency cook for meat products was validated in terms of the destruction of Cl. perfringens and B. cereus cells and spores. Finally, an aerobiology study investigated the effectiveness of a range on measures to prevent air acting as a vector for bacterial dispersion in a meat processing plant.
    • Development of a critical control step for E.coli 0157:H7 in pepperoni

      Duffy, Geraldine; Riordan, Denise C.; Sheridan, James J.; US-Ireland Co-operation Programme in Agriculture Science and Technology (Teagasc, 1999-10)
      Verocytotoxin producing Escherichia coli (VTEC) and particularly strains of serogroup O157, have emerged as food poisoning pathogens which can cause a severe and potentially fatal illness. The symptoms of VTEC infection include haemorrhagic colitis with bloody diarrhoea and severe abdominal pain. The infection may lead to renal failure as a result of haemolytic uraemic syndrome. Because of the severity of the illness and the low infectious dose, this pathogen is classed as a serious food safety issue. It is recommended by the United States Department of Agriculture that the production process for ready to eat foods such as fermented meats (pepperoni, salami etc.) should be capable of addressing a worst case scenario ie. the production process should be able to yield a log105.0cfu /g (105 cfu/g) reduction in numbers of E. coli O157:H7 on the raw meat. The aim of this study was to develop an industrially viable critical control step(s) which could be implemented into the pepperoni production process.