• Observations on the water distribution and extractable sugar content in carrot slices after pulsed electric field treatment

      Aguilo-Aguayo, Ingrid; Downey, Gerard; Keenan, Derek F.; Lyng, James G.; Brunton, Nigel; Rai, Dilip K.; Department of Agriculture, Food and the Marine; Generalitat of Catalonia; Lifelong Learning Programme; FIRM 06/TNI/AFRC6; et al. (Elsevier, 13/06/2014)
      The impact of pulsed electric field (PEF) processing conditions on the distribution of water in carrot tissue and extractability of soluble sugars from carrot slices was studied. Time domain NMR relaxometry was used to investigate the water proton mobility in PEF-treated carrot samples. Three distinct transverse relaxation peaks were observed in untreated carrots. After PEF treatment only two slightly-overlapping peaks were found; these were attributed to water present in the cytoplasm and vacuole of carrot xylem and phloem tissues. This post-treatment observation indicated an increase in water permeability of tissues and/or a loss of integrity in the tonoplast. In general, the stronger the electric field applied, the lower the area representing transverse relaxation (T2) values irrespective of treatment duration. Moreover an increase in sucrose, β- and α-glucose and fructose concentrations of carrot slice extracts after PEF treatment suggested increases in both cell wall and vacuole permeability as a result of exposure to pulsed electric fields.
    • Occurrence and identification of spore-forming bacteria in skim-milk powders

      Li, Fang; Hunt, Karen; Van Hoorde, Koenraad; Butler, Francis; Jordan, Kieran; Tobin, John; Department of Agriculture, Food and the Marine; Enterprise Ireland; 14/F/883; TC 2014 0016 (Elsevier, 2019-05-28)
      The different customer and regulatory specifications for mesophilic and thermophilic aerobic and anaerobic spore numbers in skim-milk powder, in addition to some specifications on specific spore-forming bacteria, such as Bacillus cereus, can be challenging for the industry to meet. Twenty-two samples of medium-heat skim-milk spray-dried powder from eight sources were analysed in triplicate with 16 bacterial and spore enumeration tests to understand the variety of spore-forming bacteria population. Using 16S rDNA sequencing, the species were identified for 269 isolates that were representative of the various tests. Of the isolates identified, 68% were Bacillus licheniformis, a facultative anaerobe that can survive and grow at mesophilic and thermophilic temperatures, making it difficult to eliminate in manufacturing environments. Using whole genome sequencing, 16 of 23 isolates identified as B. licheniformis by 16S sequencing were confirmed as B. licheniformis, four were identified as Bacillus paralicheniformis and three were identified as Bacillus sp. H15-1.
    • Offspring subcutaneous adipose markers are sensitive to the timing of maternal gestational weight gain

      Giblin, Linda; Darimont, Christian; Leone, Patricia; McNamara, Louise B.; Blancher, Florence; Berry, Donagh P.; Castaneda-Gutierrez, Euridice; Lawlor, Peadar G; Teagasc Walsh Fellowship Programme (Biomed Central, 08/03/2015)
      Background Excessive maternal weight gain during pregnancy impacts on offspring health. This study focused on the timing of maternal gestational weight gain, using a porcine model with mothers of normal pre-pregnancy weight. Methods Trial design ensured the trajectory of maternal gestational weight gain differed across treatments in early, mid and late gestation. Diet composition did not differ. On day 25 gestation, sows were assigned to one of five treatments: Control sows received a standard gestation diet of 2.3 kg/day (30 MJ DE/day) from early to late gestation (day 25–110 gestation). E sows received 4.6 kg food/day in early gestation (day 25–50 gestation). M sows doubled their food intake in mid gestation (day 50–80 gestation). EM sows doubled their food intake during both early and mid gestation (day 25–80 gestation). L sows consumed 3.5 kg food/day in late gestation (day 80–110 gestation). Offspring body weight and food intake levels were measured from birth to adolescence. Markers of lipid metabolism, hypertrophy and inflammation were investigated in subcutaneous adipose tissue of adolescent offspring. Results The trajectory of gestational weight gain differed across treatments. However total gestational weight gain did not differ except for EM sows who were the heaviest and fattest mothers at parturition. Offspring birth weight did not differ across treatments. Subcutaneous adipose tissue from EM offspring differed significantly from controls, with elevated mRNA levels of lipogenic (CD36, ACACB and LPL), nutrient transporters (FABP4 and GLUT4), lipolysis (HSL and ATGL), adipocyte size (MEST) and inflammation (PAI-1) indicators. The subcutaneous adipose depot from L offspring exhibited elevated levels of CD36, ACACB, LPL, GLUT4 and FABP4 mRNA transcripts compared to control offspring. Conclusions Increasing gestational weight gain in early gestation had the greatest impact on offspring postnatal growth rate. Increasing maternal food allowance in late gestation appeared to shift the offspring adipocyte focus towards accumulation of fat. Mothers who gained the most weight during gestation (EM mothers) gave birth to offspring whose subcutaneous adipose tissue, at adolescence, appeared hyperactive compared to controls. This study concluded that mothers, who gained more than the recommended weight gain in mid and late gestation, put their offspring adipose tissue at risk of dysfunction.
    • Offspring subcutaneous adipose markers are sensitive to the timing of maternal gestational weight gain

      Giblin, Linda; Darimont, Christian; Leone, Patricia; McNamara, Louise B.; Blancher, Florence; Berry, Donagh P.; Castaneda-Gutierrez, Euridice; Lawlor, Peadar G; Teagasc Walsh Fellowship Programme (Biomed Central, 08/03/2015)
      Background Excessive maternal weight gain during pregnancy impacts on offspring health. This study focused on the timing of maternal gestational weight gain, using a porcine model with mothers of normal pre-pregnancy weight. Methods Trial design ensured the trajectory of maternal gestational weight gain differed across treatments in early, mid and late gestation. Diet composition did not differ. On day 25 gestation, sows were assigned to one of five treatments: Control sows received a standard gestation diet of 2.3 kg/day (30 MJ DE/day) from early to late gestation (day 25–110 gestation). E sows received 4.6 kg food/day in early gestation (day 25–50 gestation). M sows doubled their food intake in mid gestation (day 50–80 gestation). EM sows doubled their food intake during both early and mid gestation (day 25–80 gestation). L sows consumed 3.5 kg food/day in late gestation (day 80–110 gestation). Offspring body weight and food intake levels were measured from birth to adolescence. Markers of lipid metabolism, hypertrophy and inflammation were investigated in subcutaneous adipose tissue of adolescent offspring. Results The trajectory of gestational weight gain differed across treatments. However total gestational weight gain did not differ except for EM sows who were the heaviest and fattest mothers at parturition. Offspring birth weight did not differ across treatments. Subcutaneous adipose tissue from EM offspring differed significantly from controls, with elevated mRNA levels of lipogenic (CD36, ACACB and LPL), nutrient transporters (FABP4 and GLUT4), lipolysis (HSL and ATGL), adipocyte size (MEST) and inflammation (PAI-1) indicators. The subcutaneous adipose depot from L offspring exhibited elevated levels of CD36, ACACB, LPL, GLUT4 and FABP4 mRNA transcripts compared to control offspring. Conclusions Increasing gestational weight gain in early gestation had the greatest impact on offspring postnatal growth rate. Increasing maternal food allowance in late gestation appeared to shift the offspring adipocyte focus towards accumulation of fat. Mothers who gained the most weight during gestation (EM mothers) gave birth to offspring whose subcutaneous adipose tissue, at adolescence, appeared hyperactive compared to controls. This study concluded that mothers, who gained more than the recommended weight gain in mid and late gestation, put their offspring adipose tissue at risk of dysfunction.
    • Opportunities and perspectives for utilisation of co-products in the meat industry

      Lynch, Sarah A.; Mullen, Anne Maria; O'Neill, Eileen; Drummond, Liana; Álvarez, Carlos; Department of Agriculture, Food and the Marine; 11/F/043 (Elsevier, 2018-06-19)
      Meat co-products are the non-meat components arising from meat processing/fabrication and are generated in large quantities on a daily basis. Co-products are considered as low added-value products, and in general it is difficult for industries to divert efforts into increasing their value. While many of these products can be edible those not used for human consumption or pet food is usually processed to be used as animal feed, fertilizer or fuel. However, to a large extent meat co-products are an excellent source of high nutritive value protein, minerals and vitamins and hence may be better diverted to contribute to alleviate the increasing global demand for protein. In this review the current uses, legislation and potential techniques for meat co-products processing are reviewed with the aim of showing a route to improve meat industry sustainability, profitability and better usage of available resources.
    • Optimisation and validation of ultra-high performance liquid chromatographic-tandem mass spectrometry method for qualitative and quantitative analysis of potato steroidal alkaloids

      Hossain, Mohammad B; Rai, Dilip K.; Brunton, Nigel; Department of Agriculture, Food and the Marine; 11/F/050 (Elsevier, 2015-06-09)
      An ultra-high performance liquid chromatographic-tandem mass spectrometry (UHPLC–MS/MS) method for quantification of potato steroidal alkaloids, namely α-solanine, α-chaconine, solanidine and demissidine was developed and validated. Three different column chemistries, i.e. ethylene bridged hybrid (BEH) C18, hydrophilic lipophilic interaction and amide columns, were assessed. The BEH C18 column showed best separation and sensitivity for the alkaloids. Validation data (inter-day and intra-day combined) for accuracy and recovery ranged from 94.3 to 107.7% and 97.0 to 103.5%, respectively. The accuracy data were within the acceptable range of 15% as outlined in the United States Food and Drug Administration (USFDA) guidelines. The recovery data were consistent and reproducible with a coefficient of variation (CV) ranging from 6.2 to 9.7%. In addition, precision of the method also met the criteria of the USFDA with CV values lower than 15% even at lower limit of quantification (LLOQ), while the permissible variation is considered acceptable below 20%. The limit of detection and LLOQ of the four alkaloids were in the range of 0.001–0.004 μg/mL whereas the linearities of the standard curves were between 0.980 and 0.995.
    • Optimisation of plant protein and transglutaminase content in novel beef restructured steaks for older adults by central composite design

      Baugreet, Sephora; Kerry, Joseph P.; Brodkorb, Andre; Gomez, Carolina; Auty, Mark; Allen, Paul; Hamill, Ruth M; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; 11/F/045 (Elsevier, 2018-03-29)
      With the goal of optimising a protein-enriched restructured beef steak targeted at the nutritional and chemosensory requirements of older adults, technological performance of thirty formulations, containing plant-based ingredients, pea protein isolate (PPI), rice protein (RP) and lentil flour (LF) with transglutaminase (TG) to enhance binding of meat pieces, were analysed. Maximal protein content of 28% in cooked product was achieved with PPI, RP and LF. Binding strength was primarily affected by TG, while textural parameters were improved with LF inclusion. Optimal formulation (F) to obtain a protein-enriched steak with lowest hardness values was achieved with TG (2%), PPI (8%), RP (9.35%) and LF (4%). F, F1S (optimal formulation 1 with added seasoning) and control restructured products (not containing plant proteins or seasonings) were scored by 120 consumers' aged over-65 years. Controls were most preferred (P < .05), while F1S were least liked by the older consumers. Consumer testing suggests further refinement and optimisation of restructured products with plant proteins should be undertaken.
    • Optimisation of plant protein and transglutaminase content in novel beef restructured steaks for older adults by central composite design

      Baugreet, Sephora; Kerry, Joesph; Brodkorb, André; Gomez, Carolina; Auty, Mark; Allen, Paul; Hamill, Ruth M; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine; 11/F/045 (Elsevier, 2018-03-29)
      With the goal of optimising a protein-enriched restructured beef steak targeted at the nutritional and chemosensory requirements of older adults, technological performance of thirty formulations, containing plant-based ingredients, pea protein isolate (PPI), rice protein (RP) and lentil flour (LF) with transglutaminase (TG) to enhance binding of meat pieces, were analysed. Maximal protein content of 28% in cooked product was achieved with PPI, RP and LF. Binding strength was primarily affected by TG, while textural parameters were improved with LF inclusion. Optimal formulation (F) to obtain a protein-enriched steak with lowest hardness values was achieved with TG (2%), PPI (8%), RP (9.35%) and LF (4%). F, F1S (optimal formulation 1 with added seasoning) and control restructured products (not containing plant proteins or seasonings) were scored by 120 consumers' aged over-65 years. Controls were most preferred (P < .05), while F1S were least liked by the older consumers. Consumer testing suggests further refinement and optimisation of restructured products with plant proteins should be undertaken.
    • Optimised protein recovery from mackerel whole fish by using sequential acid/alkaline isoelectric solubilization precipitation (ISP) extraction assisted by ultrasound

      Alvarez, Carlos; Lélu, Pauline; Lynch, Sarah A.; Tiwari, Brijesh; National Development Plan 2007–2013; MFFRI/07/01 (Elsevier, 2017-10-04)
      The growing fishery industry needs to find new green-processes in order to provide a solution to the huge amount of wastes and by-products that such industrial activity produces. Currently, around a 40% of the total weight of the mackerel is considered a by-product, because just the fillets are used in the food market. ISP method has been revealed as a useful tool for protein recovering, however the yield of this process is traditionally lower than enzymatic methods. In present work, the use of sequential acid/alkaline extraction and alkaline extraction assisted by ultrasound, have been implemented in order to increase the yield of the process. It has been demonstrated that (i) sequential extraction is able to recover practically 100% of total protein, and (ii) applying ultrasound to alkaline extraction is possible to recover more than 95% of total protein from mackerel by-products. Extracted proteins were characterized according to their size, and the amino acid profile of final product was determined.
    • Optimising the acceptability of reduced-salt ham with flavourings using a mixture design

      Delgado-Pando, Gonzalo; Allen, Paul; Kerry, Joseph P.; O'Sullivan, Maurice; Hamill, Ruth M; Department of Agriculture, Food and the Marine; 11F 026 (Elsevier, 2019-05-13)
      The objective of this study was to optimise the acceptability of reduced-salt cooked ham containing a mixture of glycine and yeast extract as flavourings by using response surface methodology. Twelve different formulations were prepared with varying levels of salt and the two flavourings, according to a mixture design. The sensory properties were assessed along with the instrumental texture and colour. A multiple factor analysis showed that higher scores in tenderness, saltiness and juiciness were positively correlated, whereas instrumental hardness and chewiness were negatively correlated with acceptability. Response surface plots and optimisation software allowed the inference of two optimised formulations: HO1 with 1.3% salt and yeast extract content of 0.33%; and HO2 with 1.27% salt, 0.2% yeast extract and 0.16% glycine. A panel of 100 consumers found no significant differences in overall acceptability when both were compared to a control (1.63% salt). These results show it is possible to manufacture consumer accepted cooked ham with up to 20% salt reduction.
    • Optimization of protein recovery from bovine lung by pH shift process using response surface methodology

      Lynch, Sarah A.; Alvarez, Carlos; O'Neill, Eileen; Keenan, Derek F.; Mullen, Anne Maria; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; 11/F/043 (Wiley, 2017-09)
      BACKGROUND Response surface methodology (RSM) was used in a sequential manner to optimize solubilization and precipitation conditions in the recovery of protein from bovine lung using pH shift. RESULTS Separate D‐optimal designs were employed for protein solubilization and precipitation. Independent variables investigated for protein solubilization were time (10–120 min), temperature (4–20 °C), pH (8.0–11.0) and solvent/sample ratio (2.5–10). Variables for protein precipitation were time (0–60 min) and pH (4.25–6.00). Soluble protein yields ranged from 323 to 649 g kg−1 and the quadratic model for protein solubilization revealed a coefficient of determination R2 of 0.9958. Optimal conditions for maximum protein solubility were extraction time 140 min, temperature 19 °C, pH 10.8 and solvent/sample ratio 13.02. Protein precipitation yields varied from 407 to 667 g kg−1, giving a coefficient of determination R2 of 0.9335. Optimal conditions for maximum protein precipitation were pH 5.03 and 60 min. Based on the RSM model, solubilization conditions were manipulated to maximize protein solubilization under reduced water and alkaline usage. These conditions were also validated. CONCLUSION Models for solubilization and precipitation using bovine and porcine lung were validated; predicted and actual yields were in good agreement, showing cross‐species applicability of the results. © 2017 Society of Chemical Industry
    • Optimization of ultrasound-microwave synergistic extraction of prebiotic oligosaccharides from sweet potatoes (Ipomoea batatas L.)

      Guo, Zebin; Zhao, Beibei; Li, Huang; Miao, Song; Zheng, Baodong; FAFU Funds for Distinguished Young Scientists; International Science and Technology Cooperation and Exchange Project of Fujian Agriculture And Forestry University; Science and Technology Project of Fujian Provincial Education Department; xjq201618; KXGH17001; et al. (Elsevier, 2019-03-19)
      In this study, efficient ultrasound–microwave-assisted extraction (UMAE) of prebiotic oligosaccharides from sweet potatoes (Ipomoea batatas L.) was investigated. Response surface methodology was used to optimize the extraction conditions: extraction time, ultrasonic power, and microwave power. The prebiotic effect of extracted oligosaccharides on Bifidobacterium adolescentis was also investigated. The results show that the processing conditions of UMAE for optimum the yields of prebiotic oligosaccharides from sweet potatoes (PPOS4 and PPOS5) and corresponding absorbance (OD) are 100 s extraction time, 300 W ultrasonic power, and 200 W microwave power. Under these conditions, the experimental yields of PPOS4 and PPOS5 and the corresponding OD were 1.472%, 5.476%, and 2.966, respectively, which match the predicted values well. Compared with the conventional hot-water extraction (HWE), microwave-assisted extraction (MAE), and ultrasound assisted extraction (UAE) methods, the UMAE procedure exhibited significantly high extraction efficiency (p < 0.05). Comparison of SEM images of tissues of the sweet potatoes after extractions indicate microfractures and disruption of cell walls in the potato tissues. These results confirm that UMAE has great potential and efficiency in the extraction of bioactive substances in the food and medicinal industries.
    • Oral Delivery of Nisin in Resistant Starch Based Matrices Alters the Gut Microbiota in Mice

      Gough, Ronan; Cabrera-Rubio, Raul; O'Connor, Paula M.; Crispie, Fiona; Miao, Song; Hill, Colin; Ross, R Paul; Cotter, Paul D.; Nilaweera, Kanishka N.; Rea, Mary C.; et al. (Frontiers, 15/06/2018)
      There is a growing recognition of the role the gastrointestinal microbiota plays in health and disease. Ingested antimicrobial proteins and peptides have the potential to alter the gastrointestinal microbiota; particularly if protected from digestion. Nisin is an antimicrobial peptide that is used as a food preservative. This study examined the ability of nisin to affect the murine microbiota when fed to mice in two different starch based matrices; a starch dough comprising raw starch granules and a starch gel comprising starch that was gelatinized and retrograded. The effects of the two starch matrices by themselves on the microbiota were also examined. Following 16S rRNA compositional sequencing, beta diversity analysis highlighted a significant difference (p = 0.001, n = 10) in the murine microbiota between the four diet groups. The differences between the two nisin containing diets were mainly attributable to differences in the nisin release from the starch matrices while the differences between the carriers were mainly attributable to the type of resistant starch they possessed. Indeed, the differences in the relative abundance of several genera in the mice consuming the starch dough and starch gel diets, in particular Akkermansia, the relative abundance of which was 0.5 and 11.9%, respectively (p = 0.0002, n = 10), points to the potential value of resistance starch as a modulator of beneficial gut microbes. Intact nisin and nisin digestion products (in particular nisin fragment 22–31) were detected in the feces and the nisin was biologically active. However, despite a three-fold greater consumption of nisin in the group fed the nisin in starch dough diet, twice as much nisin was detected in the feces of the group which consumed the nisin in starch gel diet. In addition, the relative abundance of three times as many genera from the lower gastrointestinal tract (GIT) were significantly different (p < 0.001, n = 10) to the control for the group fed the nisin in starch gel diet, implying that the starch gel afforded a degree of protection from digestion to the nisin entrapped within it.
    • Oral Delivery of Nisin in Resistant Starch Based Matrices Alters the Gut Microbiota in Mice

      Gough, Ronan; Cabrera-Rubio, Raul; O'Connor, Paula M.; Crispie, Fiona; Brodkorb, Andre; Miao, Song; Hill, Colin; Ross, R Paul; Cotter, Paul D.; Nilaweera, Kanishka N.; et al. (Frontiers, 2018-06-15)
      There is a growing recognition of the role the gastrointestinal microbiota plays in health and disease. Ingested antimicrobial proteins and peptides have the potential to alter the gastrointestinal microbiota; particularly if protected from digestion. Nisin is an antimicrobial peptide that is used as a food preservative. This study examined the ability of nisin to affect the murine microbiota when fed to mice in two different starch based matrices; a starch dough comprising raw starch granules and a starch gel comprising starch that was gelatinized and retrograded. The effects of the two starch matrices by themselves on the microbiota were also examined. Following 16S rRNA compositional sequencing, beta diversity analysis highlighted a significant difference (p = 0.001, n = 10) in the murine microbiota between the four diet groups. The differences between the two nisin containing diets were mainly attributable to differences in the nisin release from the starch matrices while the differences between the carriers were mainly attributable to the type of resistant starch they possessed. Indeed, the differences in the relative abundance of several genera in the mice consuming the starch dough and starch gel diets, in particular Akkermansia, the relative abundance of which was 0.5 and 11.9%, respectively (p = 0.0002, n = 10), points to the potential value of resistance starch as a modulator of beneficial gut microbes. Intact nisin and nisin digestion products (in particular nisin fragment 22–31) were detected in the feces and the nisin was biologically active. However, despite a three-fold greater consumption of nisin in the group fed the nisin in starch dough diet, twice as much nisin was detected in the feces of the group which consumed the nisin in starch gel diet. In addition, the relative abundance of three times as many genera from the lower gastrointestinal tract (GIT) were significantly different (p < 0.001, n = 10) to the control for the group fed the nisin in starch gel diet, implying that the starch gel afforded a degree of protection from digestion to the nisin entrapped within it.
    • Outdoor grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on gross composition and mineral content of milk during lactation

      Gulati, Arunima; Galvin, Norann; Lewis, Eva; Hennessy, Deirdre; O'Donovan, Michael; McManus, Jennifer J.; Fenelon, Mark A.; Guinee, Timothy P.; Department of Agriculture, Food and the Marine; Dairy Levy Trust Co-Operative Society Limited; et al. (Elsevier, 2017-08-15)
      The influence of feeding system and lactation period on the gross composition, macroelements (Ca, P, Mg, and Na), and trace elements (Zn, Fe, Cu, Mo, Mn, Se, and Co) of bovine milk was investigated. The feeding systems included outdoor grazing on perennial ryegrass pasture (GRO), outdoor grazing on perennial ryegrass and white clover pasture (GRC), and indoors offered total mixed ration (TMR). Sixty spring-calving Holstein Friesian dairy cows were assigned to 3 herds, each consisting of 20 cows, and balanced with respect to parity, calving date, and pre-experimental milk yield and milk solids yield. The herds were allocated to 1 of the 3 feeding systems from February to November. Milk samples were collected on 10 occasions over the period June 17 to November 26, at 2 or 3 weekly intervals, when cows were on average 119 to 281 d in lactation (DIL). The total lactation period was arbitrarily sub-divided into 2 lactation periods based on DIL, namely mid lactation, June 17 to September 9 when cows were 119 to 203 DIL; and late lactation, September 22 to November 26 when cows were 216 to 281 DIL. With the exception of Mg, Na, Fe, Mo, and Co, all other variables were affected by feeding system. The GRO milk had the highest mean concentrations of total solids, total protein, casein, Ca, and P. The TMR milk had the highest concentrations of lactose, Cu, and Se, and lowest level of total protein. The GRC milk had levels of lactose, Zn, and Cu similar to those of GRO milk, and concentrations of TS, Ca, and P similar to those of TMR milk. Lactation period affected all variables, apart from the concentrations of Fe, Cu, Mn, and Se. On average, the proportion (%) of total Ca, P, Zn, Mn, or Se that sedimented with the casein on high-speed ultracentrifugation at 100,000 × g was ≥60%, whereas that of Na, Mg, or Mo was ≤45% total. The results demonstrate how the gross composition and elemental composition of milk can be affected by different feeding systems.
    • Overview of seafood research at Ashtown food research centre (1990 - 2007)

      Gormley, Ronan T.; Downey, Gerard (Teagasc, 2008-02)
      In recent years, the Irish seafood industry has faced stringent quotas and dwindling fish stocks. The introduction of fish farming added a new dimension but falling prices also created difficulties for this sector. However, the recent report of the Seafood Industry Strategy Group on ‘Steering a New Course’ and the Sea Change Programme of the Marine Institute will add new impetus to the industry. The current report summarises R&D on seafood conducted at Ashtown Food Research Centre (AFRC) in the period 1990-2007 and represents a major portion of seafood R&D conducted nationally during that period.
    • Overview of Seafood Research at Ashtown Food Research Centre (1990 - 2007)

      Gormley, Ronan T.; Downey, Gerard (Teagasc, 01/02/2008)
      In recent years, the Irish seafood industry has faced stringent quotas and dwindling fish stocks. The introduction of fish farming added a new dimension but falling prices also created difficulties for this sector. However, the recent report of the Seafood Industry Strategy Group on ‘Steering a New Course’ and the Sea Change Programme of the Marine Institute will add new impetus to the industry. The current report summarises R&D on seafood conducted at Ashtown Food Research Centre (AFRC) in the period 1990-2007 and represents a major portion of seafood R&D conducted nationally during that period.
    • Partitioning of starter bacteria and added exogenous enzyme activities between curd and whey during Cheddar cheese manufacture

      Doolan, I. A.; Nongonierma, Alice B.; Kilcawley, Kieran N; Wilkinson, M.G.; Department of Agriculture, Food and the Marine, Ireland; 04/R&D/C/238 (Elsevier, 26/07/2013)
      Partitioning of starter bacteria and enzyme activities was investigated at different stages of Cheddar cheese manufacture using three exogenous commercial enzyme preparations added to milk or at salting. The enzyme preparations used were: Accelase AM317, Accelase AHC50, Accelerzyme CPG. Flow cytometric analysis indicated that AHC50 or AM317 consisted of permeabilised or dead cells and contained a range of enzyme activities. The CPG preparation contained only carboxypeptidase activity. Approximately 90% of starter bacteria cells partitioned with the curd at whey drainage. However, key enzyme activities partitioned with the bulk whey in the range of 22%–90%. An increased level of enzyme partitioning with the curd was observed for AHC50 which was added at salting, indicating that the mode of addition influenced partitioning. These findings suggest that further scope exists to optimise both bacterial and exogenous enzyme incorporation into cheese curd to accelerate ripening.
    • Paste structure and rheological properties of lotus seed starch–glycerin monostearate complexes formed by high-pressure homogenization

      Chen, Bingyan; Guo, Zebin; Zeng, Shaoxiao; Tian, Yuting; Miao, Song; Zheng, Baodong; National Natural Science Foundation of China; Scientific and Technological Innovation Team Support Plan of Institution of Higher Learning in Fujian Province; Fujian Agriculture and Forestry University of China; 31501485; et al. (Elsevier, 2017-10-31)
      Starch–lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high-pressure homogenization (HPH) process, and the effect of HPH on the paste structure and rheological properties of LS–GMS was investigated. Rapid Visco Analyser (RVA) profiles showed that HPH treatment inhibited the formation of the second viscosity peak of the LS–GMS paste, and the extent of this change was dependent on the level of homogenized pressure. Analysis of the size-exclusion chromatography, light microscopy, and low-field 1H nuclear magnetic resonance results revealed that high homogenized pressure (70–100 MPa) decreased molecular weight and size by degrading the branch structure of amylopectin; however, intact LS–GMS granules can optimize the network structure by filler–matrix interaction, which causes free water to transition into immobile water in the starch paste. The steady-shear results showed that the LS–GMS pastes presented non-Newtonian shear-thinning behavior, with higher homogenized pressure producing a smaller hysteresis loop area. During the oscillation process, the LS–GMS pastes prepared at 100 MPa exhibited the lowest loss tangent values in all the complexes, indicating a stronger resistance to vibration.
    • Performances of full cross-validation partial least squares regression models developed using Raman spectral data for the prediction of bull beef sensory attributes

      Zhao, Ming; Nian, Yingqun; Allen, Paul; Downey, Gerard; Kerry, Joseph P.; O’Donnell, Colm P.; Teagasc Walsh Fellowship Programme (Elsevier BV, 2018-04-23)
      The data presented in this article are related to the research article entitled “Application of Raman spectroscopy and chemometric techniques to assess sensory characteristics of young dairy bull beef” [1]. Partial least squares regression (PLSR) models were developed on Raman spectral data pre-treated using Savitzky Golay (S.G.) derivation (with 2nd or 5th order polynomial baseline correction) and results of sensory analysis on bull beef samples (n = 72). Models developed using selected Raman shift ranges (i.e. 250–3380 cm−1, 900–1800 cm−1 and 1300–2800 cm−1) were explored. The best model performance for each sensory attributes prediction was obtained using models developed on Raman spectral data of 1300–2800 cm−1.