• Rapid control systems for veterinary drug residues in food producing animals

      O'Keeffe, Michael; European Union; SMT4 - CT96 - 2092 (Teagasc, 2002-10)
      The aim was to develop rapid systems which could be used to test for the presence of veterinary drug residues in food producing animals. Body fluid samples are most suitable for rapid testing systems so as to avoid the lengthy residue extraction procedures required for tissue samples. Urine was analysed for sulphamethazine, a licensed antimicrobial, and for chlorotestosterone, a prohibited growth promoting agent, as models to demonstrate the different approaches.
    • Rapid cooling of cooked meat joints

      Kenny, Tony; Desmond, Eoin; Ward, Patrick; Sun, Da-Wen (Teagasc, 2002-02)
      Conventional cooling by air-blast or even by immersion in liquid is unlikely to achieve recommended cooling rates when dealing with joints weighing 5kg or more because meat has a low thermal conductivity. The objective was to investigate vacuum cooling as a technique for rapid chilling of cooked meat joints. In vacuum cooling, the food is enclosed in a chamber and reduction of the pressure to about 7 mbar causes evaporation of water from the surface of the food and from cavities in the food. The energy required to evaporate the water is extracted from the food, resulting in rapid chilling
    • Recombinant Incretin-Secreting Microbe Improves Metabolic Dysfunction in High-Fat Diet Fed Rodents

      Ryan, Paul M; Patterson, Elaine; Kent, Robert M.; Stack, Helena; O’Connor, Paula M.; Murphy, Kiera; Peterson, Veronica L.; Mandal, Rupasri; Wishart, David S.; Dinan, Timothy G.; et al. (Springer Nature, 2017-10-19)
      The gut hormone glucagon-like peptide (GLP)-1 and its analogues represent a new generation of anti-diabetic drugs, which have also demonstrated propensity to modulate host lipid metabolism. Despite this, drugs of this nature are currently limited to intramuscular administration routes due to intestinal degradation. The aim of this study was to design a recombinant microbial delivery vector for a GLP-1 analogue and assess the efficacy of the therapeutic in improving host glucose, lipid and cholesterol metabolism in diet induced obese rodents. Diet-induced obese animals received either Lactobacillus paracasei NFBC 338 transformed to express a long-acting analogue of GLP-1 or the isogenic control microbe which solely harbored the pNZ44 plasmid. Short-term GLP-1 microbe intervention in rats reduced serum low-density lipoprotein cholesterol, triglycerides and triglyceride-rich lipoprotein cholesterol substantially. Conversely, extended GLP-1 microbe intervention improved glucose-dependent insulin secretion, glucose metabolism and cholesterol metabolism, compared to the high-fat control group. Interestingly, the microbe significantly attenuated the adiposity associated with the model and altered the serum lipidome, independently of GLP-1 secretion. These data indicate that recombinant incretin-secreting microbes may offer a novel and safe means of managing cholesterol metabolism and diet induced dyslipidaemia, as well as insulin sensitivity in metabolic dysfunction.
    • Recovery and identification of emerging Campylobacteraceae from food

      Duffy, Geraldine; Cagney, Claire; Lynch, Orla; Downey, Gerard (Teagasc, 01/02/2007)
      The family Campylobacteraceae includes 23 different species of Campylobacter and Arcobacter.To date, clinical and epidemiological interest has focused almost exclusively on just two of these species, C. jejuni and C. coli. Current routine examination methods for both clinical and food samples look exclusively for these two species. Recent clinical research indicates that some of the other, previously ignored Campylobacter species may be linked to human infection. The focus of this research was to develop a routine procedure which would allow recovery of all 23 species of Campylobacteraceae from food samples.
    • Recovery and identification of emerging campylobacteraceae from food

      Duffy, Geraldine; Cagney, Claire; Lynch, Orla (Teagasc, 2007-02)
      The family Campylobacteraceae includes 23 different species of Campylobacter and Arcobacter.To date, clinical and epidemiological interest has focused almost exclusively on just two of these species, C. jejuni and C. coli. Current routine examination methods for both clinical and food samples look exclusively for these two species. Recent clinical research indicates that some of the other, previously ignored Campylobacter species may be linked to human infection. The focus of this research was to develop a routine procedure which would allow recovery of all 23 species of Campylobacteraceae from food samples.
    • Recovery of Polyphenols from Brewer’s Spent Grains

      Birsan, Rares; Wilde, Peter; Waldron, Keith; Rai, Dilip K.; Teagasc Walsh Fellowship Programme; 2014027 (MDPI, 2019-09-07)
      The recovery of antioxidant polyphenols from light, dark and mix brewer’s spent grain (BSG) using conventional maceration, microwave and ultrasound assisted extraction was investigated. Total polyphenols were measured in the crude (60% acetone), liquor extracts (saponified with 0.75% NaOH) and in their acidified ethyl acetate (EtOAc) partitioned fractions both by spectrophotometry involving Folin–Ciocalteu reagent and liquid-chromatography-tandem mass spectrometry (LC-MS/MS) methods. Irrespective of the extraction methods used, saponification of BSG yielded higher polyphenols than in the crude extracts. The EtOAc fractionations yielded the highest total phenolic content (TPC) ranging from 3.01 ± 0.19 to 4.71 ± 0.28 mg gallic acid equivalent per g of BSG dry weight. The corresponding total polyphenols quantified by LC-MS/MS ranged from 549.9 ± 41.5 to 2741.1 ± 5.2 µg/g of BSG dry weight. Microwave and ultrasound with the parameters and equipment used did not improve the total polyphenol yield when compared to the conventional maceration method. Furthermore, the spectrophotometric quantification of the liquors overestimated the TPC, while the LC-MS/MS quantification gave a closer representation of the total polyphenols in all the extracts. The total polyphenols were in the following order in the EtOAc fractions: BSG light > BSG Mix > BSG dark, and thus suggested BSG light as a sustainable, low cost source of natural antioxidants that may be tapped for applications in food and phytopharmaceutical industries.
    • Recovery of Steroidal Alkaloids from Potato Peels Using Pressurized Liquid Extraction

      Rawson, Ashish; Aguiló-Aguayo, Ingrid; Brunton, Nigel; Hossain, Mohammad B; Rai, Dilip K.; Department of Agriculture, Food and the Marine; 08/RD/AFRC/673 (MDPI, 2015-05-13)
      A higher yield of glycoalkaloids was recovered from potato peels using pressurized liquid extraction (1.92 mg/g dried potato peels) compared to conventional solid–liquid extraction (0.981 mg/g dried potato peels). Response surface methodology deduced the optimal temperature and extracting solvent (methanol) for the pressurized liquid extraction (PLE) of glycoalkaloids as 80 °C in 89% methanol. Using these two optimum PLE conditions, levels of individual steroidal alkaloids obtained were of 597, 873, 374 and 75 µg/g dried potato peel for α-solanine, α-chaconine, solanidine and demissidine respectively. Corresponding values for solid liquid extraction were 59%, 46%, 40% and 52% lower for α-solanine, α-chaconine, solanidine and demissidine respectively
    • Reducing the incidence of boar taint in Irish pigs

      Allen, Paul; Joseph, Robin; Lynch, Brendan (Teagasc, 2001-04)
      Boar taint is an unpleasant odour that is released during cooking from some pork and products made from the meat and fat of non-castrated male pigs. Only a proportion of boars produce this odour and not all consumers are sensitive to it. Nevertheless it is a potential problem for the industry since an unpleasant experience can mean that a sensitive consumer may not purchase pork or pork products again. Some European countries are very concerned about this problem and most castrate all the male pigs not required for breeding. Irish pig producers ceased castration more than 20 years ago because boars are more efficient converters of feed into lean meat and a research study had shown that boar taint was not a problem at the carcass weights used in this country at that time.
    • Regulation of intestinal growth in response to variations in energy supply and demand

      Nilaweera, Kanishka N.; Speakman, John R.; Science Foundation Ireland; Biotechnology and Biological Sciences Research Council (BBSRC); SFI/16/BBSRC/3389; BB/P009875/1 (Wiley, 2018-12-03)
      The growth of the intestine requires energy, which is known to be met by catabolism of ingested nutrients. Paradoxically, during whole body energy deficit including calorie restriction, the intestine grows in size. To understand how and why this happens, we reviewed data from several animal models of energetic challenge. These were bariatric surgery, cold exposure, lactation, dietary whey protein intake and calorie restriction. Notably, these challenges all reduced the adipose tissue mass, altered hypothalamic neuropeptide expression and increased intestinal size. Based on these data, we propose that the loss of energy in the adipose tissue promotes the growth of the intestine via a signalling mechanism involving the hypothalamus. We discuss possible candidates in this pathway including data showing a correlative change in intestinal (ileal) expression of the cyclin D1 gene with adipose tissue mass, adipose derived‐hormone leptin and hypothalamic expression of leptin receptor and the pro‐opiomelanocortin gene. The ability of the intestine to grow in size during depletion of energy stores provides a mechanism to maximize assimilation of ingested energy and in turn sustain critical functions of tissues important for survival.
    • Regulatory polymorphisms in the bovine Ankyrin 1 gene promoter are associated with tenderness and intra-muscular fat content

      Aslan, Ozlem; Sweeney, Torres; Mullen, Anne Maria; Hamill, Ruth M; Department of Agriculture, Food and the Marine, Ireland (Biomed Central, 15/12/2010)
      Recent QTL and gene expression studies have highlighted ankyrins as positional and functional candidate genes for meat quality. Our objective was to characterise the promoter region of the bovine ankyrin 1 gene and to test polymorphisms for association with sensory and technological meat quality measures. Results Seven novel promoter SNPs were identified in a 1.11 kb region of the ankyrin 1 promoter in Angus, Charolais and Limousin bulls (n = 15 per breed) as well as 141 crossbred beef animals for which meat quality data was available. Eighteen haplotypes were inferred with significant breed variation in haplotype frequencies. The five most frequent SNPs and the four most frequent haplotypes were subsequently tested for association with sensory and technological measures of meat quality in the crossbred population. SNP1, SNP3 and SNP4 (which were subsequently designated regulatory SNPs) and SNP5 were associated with traits that contribute to sensorial and technological measurements of tenderness and texture; Haplotype 1 and haplotype 4 were oppositely correlated with traits contributing to tenderness (P < 0.05). While no single SNP was associated with intramuscular fat (IMF), a clear association with increased IMF and juiciness was observed for haplotype 2. Conclusion The conclusion from this study is that alleles defining haplotypes 2 and 4 could usefully contribute to marker SNP panels used to select individuals with improved IMF/juiciness or tenderness in a genome-assisted selection framework.
    • Reincarnation of Bacteriocins From the Lactobacillus Pangenomic Graveyard

      Collins, Fergus W. J.; Mesa-Pereira, Beatriz; O'Connor, Paula M.; Rea, Mary C.; Hill, Colin; Ross, R Paul; Science Foundation Ireland; SFI/12/RC/227 (Frontiers, 2018-07-02)
      Bacteria commonly produce narrow spectrum bacteriocins as a means of inhibiting closely related species competing for similar resources in an environment. The increasing availability of genomic data means that it is becoming easier to identify bacteriocins encoded within genomes. Often, however, the presence of bacteriocin genes in a strain does not always translate into biological antimicrobial activity. For example, when analysing the Lactobacillus pangenome we identified strains encoding ten pediocin-like bacteriocin structural genes which failed to display inhibitory activity. Nine of these bacteriocins were novel whilst one was identified as the previously characterized bacteriocin “penocin A.” The composition of these bacteriocin operons varied between strains, often with key components missing which are required for bacteriocin production, such as dedicated bacteriocin transporters and accessory proteins. In an effort to functionally express these bacteriocins, the structural genes for the ten pediocin homologs were cloned alongside the dedicated pediocin PA-1 transporter in both Escherichia coli and Lactobacillus paracasei heterologous hosts. Each bacteriocin was cloned with its native leader sequence and as a fusion protein with the pediocin PA-1 leader sequence. Several of these bacteriocins displayed a broader spectrum of inhibition than the original pediocin PA-1. We show how potentially valuable bacteriocins can easily be “reincarnated” from in silico data and produced in vitro despite often lacking the necessary accompanying machinery. Moreover, the study demonstrates how genomic datasets such as the Lactobacilus pangenome harbor a potential “arsenal” of antimicrobial activity with the possibility of being activated when expressed in more genetically amenable hosts.
    • Reincarnation of Bacteriocins From the Lactobacillus Pangenomic Graveyard

      Collins, Fergus W. J.; Mesa-Pereira, Beatriz; O'Connor, Paula M.; Rea, Mary C.; Hill, Colin; Ross, R Paul; Science Foundation Ireland; SFI/12/RC/227 (Frontiers, 02/07/2018)
      Bacteria commonly produce narrow spectrum bacteriocins as a means of inhibiting closely related species competing for similar resources in an environment. The increasing availability of genomic data means that it is becoming easier to identify bacteriocins encoded within genomes. Often, however, the presence of bacteriocin genes in a strain does not always translate into biological antimicrobial activity. For example, when analysing the Lactobacillus pangenome we identified strains encoding ten pediocin-like bacteriocin structural genes which failed to display inhibitory activity. Nine of these bacteriocins were novel whilst one was identified as the previously characterized bacteriocin “penocin A.” The composition of these bacteriocin operons varied between strains, often with key components missing which are required for bacteriocin production, such as dedicated bacteriocin transporters and accessory proteins. In an effort to functionally express these bacteriocins, the structural genes for the ten pediocin homologs were cloned alongside the dedicated pediocin PA-1 transporter in both Escherichia coli and Lactobacillus paracasei heterologous hosts. Each bacteriocin was cloned with its native leader sequence and as a fusion protein with the pediocin PA-1 leader sequence. Several of these bacteriocins displayed a broader spectrum of inhibition than the original pediocin PA-1. We show how potentially valuable bacteriocins can easily be “reincarnated” from in silico data and produced in vitro despite often lacking the necessary accompanying machinery. Moreover, the study demonstrates how genomic datasets such as the Lactobacilus pangenome harbor a potential “arsenal” of antimicrobial activity with the possibility of being activated when expressed in more genetically amenable hosts.
    • Relatedness between the two-component lantibiotics lacticin 3147 and staphylococcin C55 based on structure, genetics and biological activity

      O'Connor, Eileen B; Cotter, Paul D.; O'Connor, Paula M.; O'Sullivan, Orla; Tagg, John R; Ross, R Paul; Hill, Colin (Biomed Central, 02/04/2007)
      Background: Two component lantibiotics, such as the plasmid-encoded lacticin 3147 produced by Lactococcus lactis DPC3147 and staphylococcin C55 produced by Staphylococcus aureus C55, represent an emerging subgroup of bacteriocins. These two bacteriocins are particularly closely related, exhibiting 86% (LtnA1 and C55α) and 55% (LtnA2 and C55β) identity in their component peptides. The aim of this study was to investigate, for the first time for any two component bacteriocins, the significance of the relatedness between these two systems. Results: So close is this relatedness that the hybrid peptide pairs LtnA1:C55β and C55α:LtnA2 were found to have activities in the single nanomolar range, comparing well with the native pairings. To determine whether this flexibility extended to the associated post-translational modification/processing machinery, the staphylococcin C55 structural genes were directly substituted for their lacticin 3147 counterparts in the ltn operon on the large conjugative lactococcal plasmid pMRC01. It was established that the lacticin LtnA1 post-translational and processing machinery could produce functionally active C55α, but not C55β. In order to investigate in closer detail the significance of the differences between LtnA1 and C55α, three residues in LtnA1 were replaced with the equivalent residues in C55α. Surprisingly, one such mutant LtnA1-Leu21Ala was not produced. This may be significant given the positioning of this residue in a putative lipid II binding loop. Conclusion: It is apparent, despite sharing striking similarities in terms of structure and activity, that these two complex bacteriocins display some highly dedicated features particular to either system.
    • Relating starch properties to boiled potato texture

      Gormley, Ronan T.; Department of Agriculture, Food and the Marine (Teagasc, Ballsbridge, Dublin 4, 1998-08)
      Basic information on starch properties may help to explain the different textural characteristics of potato cultivars, and also their suitability for different forms of processing. The study involved tests on both raw potatoes, and on starch separated from potatoes, and embraced three main activities: (i) to relate boiled-potato texture with the other test variables; (ii) to develop a rapid crush-test for assessing cooked-potato texture; (iii) to study the effect of chilling and freezing on the development of resistant starch (RS) in boiled potatoes.
    • Residue analyses and exposure assessment of the Irish population to nitrofuran metabolites from different food commodities in 2009–2010

      Radovnikovic, Anita; Conroy, Emma-Rose; Gibney, Mike; O'Mahony, John; Danaher, Martin; Department of Agriculture, Food and the Marine, Ireland; Health Research Board; 07FHRIAFRC5 (Taylor & Francis, 16/09/2013)
      An exposure assessment to nitrofuran residues was performed for three human populations (adults, teenagers and children), based on residue analyses of foods of animal origin (liver, honey, eggs and aquaculture) covering the 2-year period 2009– 2010. The occurrence of nitrofuran metabolites in food on the Irish market was determined for the selected period using the data from Ireland’s National Food Residue Database (NFRD) and from results obtained from the analysis of retail samples (aquaculture and honey). Laboratory analyses of residues were performed by methods validated in accordance with Commission Decision 2002/657/EC regarding performance of the analytical method and interpretation of results. Semicarbazide (SEM) was the contaminant most frequently identified and its content ranged from 0.09 to 1.27 μg kg−1. SEM is currently used as a marker of nitrofuran abuse, but it may also occur from other sources. The presence of nitrofuran metabolite 3-amino-2-oxazolidinone (AOZ) was detected in two aquaculture samples (prawns) at 1.63 and 1.14 μg kg−1, but such a low number of positive cases did not present sufficient data for a full AOZ exposure assessment. Therefore, the evaluation of exposure was focused on SEM-containing food groups only. Exposure assessments were completed using a probabilistic approach that generated 10 iterations. The results of both the upper- and lower-bound exposure assessments demonstrate that SEM exposure for Irish adults, teenagers and children from selected food commodities are well below EFSA-estimated safe levels.
    • A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies

      Gangopadhyay, Nirupama; Rai, Dilip K.; Brunton, Nigel; Hossain, Mohammad B; Department of Agriculture, Food and the Marine.; 11/SF/317 (MDPI, 2015-06-12)
      Oat and barely are cereal crops mainly used as animal feed and for the purposes of malting and brewing, respectively. Some studies have indicated that consumption of oat and barley rich foods may reduce the risk of some chronic diseases such as coronary heart disease, type II diabetes and cancer. Whilst there is no absolute consensus, some of these benefits may be linked to presence of compounds such as phenolics, vitamin E and β-glucan in these cereals. A number of benefits have also been linked to the lipid component (sterols, fatty acids) and the proteins and bioactive peptides in oats and barley. Since the available evidence is pointing toward the possible health benefits of oat and barley components, a number of authors have examined techniques for recovering them from their native sources. In the present review, we summarise and examine the range of conventional techniques that have been used for the purpose of extraction and detection of these bioactives. In addition, the recent advances in use of novel food processing technologies as a substitute to conventional processes for extraction of bioactives from oats and barley, has been discussed.
    • Review of potential sources and control of thermoduric bacteria in bulk-tank milk

      Gleeson, David E; O'Connell, Aine; Jordan, Kieran; Irish Dairy Levy Research Trust (Teagasc (Agriculture and Food Development Authority), Ireland, 2013)
      Bacteria that contaminate milk include thermoduric bacteria that can survive pasteurisation and subsequently grow in the pasteurised milk or contaminate product. Elimination of thermodurics at milking is not feasible. Therefore, knowledge of their source and strategies for their reduction are important. The major sources of thermodurics in milk are contamination of the teat skin from soil and bedding, and subsequent contamination from deposits that can build up on milking equipment surfaces. Hygiene at milking can reduce the number of bacteria contaminating milk. Teat preparation at milking and a recommended plant cleaning procedure are critical to the prevention of the contamination of milk with thermoduric bacteria.
    • Review of studies on flukicide residues in cows’ milk and their transfer to dairy products

      Power, C.; Sayers, Riona; O'Brien, Bernadette; Furey, A.; Danaher, Martin; Kieran, Jordan; Teagasc Walsh Fellowship Programme (Teagasc (Agriculture and Food Development Authority), Ireland, 2013)
      Flukicides are widely used to treat infestations of liver fluke in dairy cattle. This could result in flukicide residues in milk if animals are improperly treated or if withdrawal periods are not properly observed. The purpose of this review is to summarise the results of studies on depletion of flukicides from milk and the transfer of flukicide residues to dairy products, if present in the milk. As the depletion of flukicide residues from milk of animals treated during lactation was relatively slow, the studies support the view that the dry period (when milk is not being used for human consumption) is the most suitable time for flukicide treatment. Migration of residues to product occurred at different rates, depending on the drug in question. Generally, concentration of flukicides occurred in cheese, butter and skim milk powder. Pasteurisation or heat treatment during spray drying had no impact in reducing residues.
    • A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies

      Cao, Yu; Fanning, Seamus; Proos, Sinead; Jordan, Kieran; Srikumar, Shabarinath; Department of Agriculture, Food and the Marine, Ireland; 13/F/423 (Frontiers, 2017)
      The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods.
    • A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies

      Cao, Yu; Fanning, Seamus; Proos, Sinead; Jordan, Kieran; Srikumar, Shabarinath; Department of Agriculture, Food and the Marine; Enterprise Ireland; 13/F/423; IP 2015 0380 (Frontiers, 2017-09-21)
      The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods.