• Farm management factors associated with bulk tank somatic cell count in Irish dairy herds

      Kelly, PT; O'Sullivan, K; Berry, Donagh P.; More, Simon J; Meaney, William J; O'Callaghan, Edmond J; O'Brien, Bernadette (Biomed Central, 01/04/2009)
      The relationship between bulk tank somatic cell count (SCC) and farm management and infrastructure was examined using data from 398 randomly selected, yet representative, Irish dairy farms where the basal diet is grazed grass. Median bulk tank SCC for the farms was 282,887 cells/ml ranging from 82,209 to 773,028 cells/ml. Two questionnaires were administered through face-to-face contact with each farmer. Herd-level factors associated with bulk tank SCC were determined using linear models with annual somatic cell score (i.e., arithmetic mean of the natural logarithm of bulk tank SCC) included as the dependent variable. All herd level factors were analysed individually in separate regression models, which included an adjustment for geographical location of the farm; a multiple regression model was subsequently developed. Management practices associated with low SCC included the use of dry cow therapy, participation in a milk recording scheme and the use of teat disinfection post-milking. There was an association between low SCC and an increased level of hygiene and frequency of cleaning of the holding yard, passageways and cubicles. Herd management factors associated with bulk tank SCC in Irish grazing herds are generally in agreement with most previous studies from confinement systems of milk production.
    • Farm management factors associated with bulk tank total bacterial count in Irish dairy herds during 2006/07

      Kelly, PT; O'Sullivan, K; Berry, Donagh P.; More, Simon J; Meaney, William J; O'Callaghan, Edmond J; O'Brien, Bernadette (Biomed Central, 01/01/2009)
      Research has shown that total bacterial count (TBC), which is the bacterial growth per ml of milk over a fixed period of time, can be decreased by good hygiene and farm management practices. The objective of the current study was to quantify the associations between herd management factors and bulk tank TBC in Irish spring calving, grass-based dairy herds. The relationship between bulk tank TBC and farm management and infrastructure was examined using data from 400 randomly selected Irish dairy farms where the basal diet was grazed grass. Herd management factors associated with bulk tank TBC were identified using linear models with herd annual total bacterial score (i.e., arithmetic mean of the natural logarithm of bulk tank TBC) included as the dependent variable. All herd management factors were individually analysed in a separate regression model, that included an adjustment for geographical location of the farm. A multiple stepwise regression model was subsequently developed. Median bulk tank TBC for the sample herds was 18,483 cells/ml ranging from 10,441 to 130,458 cells/ml. Results from the multivariate analysis indicated that the following management practices were associated with low TBC; use of heated water in the milking parlour; participation in a milk recording scheme; and tail clipping of cows at a frequency greater than once per year. Increased level of hygiene of the parlour and cubicles were also associated with lower TBC. Herd management factors associated with bulk tank TBC in Irish grazing herds were generally in agreement with most previous studies from confinement systems of milk production.
    • Feasibility Study on the Use of Visible–Near-Infrared Spectroscopy for the Screening of Individual and Total Glucosinolate Contents in Broccoli

      Hernandez-Hierro, Jose Miguel; Valverde, Juan; Villacreces, Salvador; Reilly, Kim; Gaffney, Michael; Gonzalez-Miret, Maria Lourdes; Heredia, Francisco Jose; Downey, Gerard; Spanish MICINN; Junta de Andalucia; et al. (American Chemical Society, 11/07/2012)
      The potential of visible–near-infrared spectroscopy to determine selected individual and total glucosinolates in broccoli has been evaluated. Modified partial least-squares regression was used to develop quantitative models to predict glucosinolate contents. Both the whole spectrum and different spectral regions were separately evaluated to develop the quantitative models; in all cases the best results were obtained using the near-infrared zone between 2000 and 2498 nm. These models have been externally validated for the screening of glucoraphanin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin, and total glucosinolates contents. In addition, discriminant partial least-squares was used to distinguish between two possible broccoli cultivars and showed a high degree of accuracy. In the case of the qualitative analysis, best results were obtained using the whole spectrum (i.e., 400–2498 nm) with a correct classification rate of 100% in external validation being obtained.
    • Fermented beverages with health-promoting potential: Past and future perspectives

      Marsh, Alan J.; Hill, Colin; Ross, R Paul; Cotter, Paul D. (Elsevier, 16/07/2014)
      Fermentation is an ancient form of food preservation, which also improves the nutritional content of foods. In many regions of the world, fermented beverages have become known for their health-promoting attributes. In addition to harnessing traditional beverages for commercial use, there have recently been innovative efforts to develop non-dairy probiotic fermented beverages from a variety of substrates, including soy milk, whey, cereals and vegetable and fruit juices. On the basis of recent developments, it is anticipated that fermented beverages will continue to be a significant component within the functional food market.
    • Fermented beverages with health-promoting potential: Past and future perspectives

      Marsh, Alan J.; Hill, Colin; Ross, R Paul; Cotter, Paul D. (Elsevier, 20/05/2014)
      Highlights • Traditional fermented beverages are reviewed. • Microbiology and probiotic potential of beverages are considered. • Recent developments in novel probiotic beverage production. • Beverages produced from a number of different substrates are explored. • Review of enchancements (prebiotics, flavours and neutraceuticals). Fermentation is an ancient form of food preservation, which also improves the nutritional content of foods. In many regions of the world, fermented beverages have become known for their health-promoting attributes. In addition to harnessing traditional beverages for commercial use, there have recently been innovative efforts to develop non-dairy probiotic fermented beverages from a variety of substrates, including soy milk, whey, cereals and vegetable and fruit juices. On the basis of recent developments, it is anticipated that fermented beverages will continue to be a significant component within the functional food market.
    • Food authentication using infrared spectroscopic methods

      Downey, Gerard; Kelly, J. Daniel (Teagasc, 2006-06)
      Confirmation of the authenticity of a food or food ingredient is an increasing challenge for food processors and regulatory authorities. This is especially the case when an added-value claim, such as one relating to geographic origin or a particular processing history, is made on the food label. Regulatory agencies are concerned with the prevention of economic fraud while the food processor needs confirmation of such claims in order to protect a brand, the image of which could be severely damaged should an adulterated ingredient make its way into the branded food product.
    • Food Authentication using Infrared Spectroscopic Methods

      Downey, Gerard; Kelly, J. Daniel (Teagasc, 01/06/2006)
      Confirmation of the authenticity of a food or food ingredient is an increasing challenge for food processors and regulatory authorities. This is especially the case when an added-value claim, such as one relating to geographic origin or a particular processing history, is made on the food label. Regulatory agencies are concerned with the prevention of economic fraud while the food processor needs confirmation of such claims in order to protect a brand, the image of which could be severely damaged should an adulterated ingredient make its way into the branded food product.To be of greatest value, any analytical tool deployed to confirm authenticity claims needs to be portable, easy to use, non-destructive and accurate. Infrared spectroscopy, near and mid-infrared, is a tool which has been demonstrated to possess these properties in a wide range of situations.While some applications in food authenticity have been reported, the work undertaken in this project was designed to explore their capabilities regarding a number of products and authenticity issues of particular interest to the Irish agri-food industry i.e. olive oil, honey, soft fruit purées and apple juice.
    • Food residue database

      O'Keeffe, Michael; Kennedy, Orla; Farrell, Frank; Nolan, Marie-Louise; Dooley, Martin; Byrne, Patrick; Nugent, Audrey; Cantwell, Helen; Horne, Elizabeth; Nelson, Victor; et al. (Teagasc, 2001-11)
      The Food Residue Database contains a broad range of residue studies in foods of animal origin for the period 1995 to 2000, covering veterinary drugs, pesticides and contaminants. In most cases, such as antiparasitic drugs, beta-agonists, pesticides, dioxins, mycotoxins, heavy metals and polycyclic aromatic hydrocarbons, the picture for Irish dairy, meat and fish products is good with residue levels being low or non-measurable. In a few cases, such as ivermectin in farmed salmon and tetracycline residues in pork, improvements in the situation were observed with subsequent studies. Antimicrobial residues, in general, are not a problem but levels above MRL values have been found indicating the need for good practice in use of veterinary medicines. A problem with elevated nitrate levels in dairy powders may be resolved by the industry through observance of good manufacturing practices. Summary Reports on all the studies carried out for the Food Residue Database are available to food companies and other interested parties.
    • The Formation of an Anti-Cancer Complex Under Simulated Gastric Conditions

      Sullivan, Louise M.; Mok, K.Hun; Brodkorb, Andre; Department of Agriculture, Food and the Marine; Teagasc Walsh Fellowship Programme; COST (European Cooperation in Science and Technology); 08RDTMFRC650; FA 1005 (Springer-Verlag, 01/05/2013)
      A potent anti-cancer complex has previously been formed from two major components of milk. Human/bovine α-lactalbumin made lethal to tumour cells (H/BAMLET) is a protein–fatty acid complex that has been produced using the whey protein α-lactalbumin (α-LA) and the fatty acid oleic acid (OA). It was shown that it possesses selective anti-tumour and anti-microbial activity, which was first identified in acidic fractions of human breast milk. The aim of this study was to determine whether the two components would form a bioactive complex during simulated gastric (GI) transit. Results showed that a complex consisting of α-LA and OA is formed as the protein unfolds under acidic conditions and subsequently refolds upon pH increase. Analysis of this complex using Nuclear Magnetic Resonance and Fourier Transform Infra-Red (FTIR) spectroscopies estimated a stoichiometry of 4.1 and 4.4 oleic acids per mole of protein, respectively. FTIR and fluorescence spectroscopies showed that the structure was similar to that of BAMLET. Cytotoxicity testing against cancer cell line U937 cells showed that the complex had an LC50 value of 14.08 μM compared to 9.15 μM for BAMLET. These findings suggest that a BAMLET-like complex may be formed under the tested in vitro GI conditions.
    • Formation of non-native β-lactoglobulin during heat-induced denaturation

      Kehoe, Joseph James; Wang, Lizhe; Morris, Edwin R; Brodkorb, Andre; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine (Springer, 01/12/2011)
      A mechanism describing the denaturation and aggregation behavior during heat-treatment of pure β-lactoglobulin and β-lactoglobulin in whey protein isolate (WPI) under selected conditions (20 to 90 gL−1 in water at pH 7.0, 78 °C) is presented. A combination of reversed-phase and gel permeation chromatography was used to study the disappearance of native β-lactoglobulin and the formation of non-native intermediates in the aggregation process. The mean reaction order for pure β-lactoglobulin and β-lactoglobulin in WPI were the same, 1.4. While the rate of β-lactoglobulin denaturation was greater in WPI there was less aggregation compared to that of pure β-lactoglobulin. More of the β-lactoglobulin in WPI remained in a non-native monomer intermediate state after 30 min of heating. After an initial lag period, during which non-native monomers appeared, aggregates formed and rapidly reached a plateau in terms of their size. These aggregates were visualized using atomic force microscopy. There was no significant effect of protein concentration on either aggregate size or the number of exposed sulfhydryls in the heated solutions.
    • Freeze-chilling and gas flushing of raw fish fillets

      Fagan, John; Gormley, Ronan T.; Uí Mhuircheartaigh, Mary M. (Teagasc, 2003-04)
      Freeze-chilling involves freezing and frozen storage followed by thawing and chilled storage. Trials with whiting and mackerel fillets/portions (Part 1) indicated no difference in odour scores (raw samples) between freeze-chilled and chilled samples; however, freeze-chilled salmon portions were inferior to chilled in terms of odour. Fresh fillets received the highest acceptability scores as cooked samples followed by frozen, chilled and freeze-chilled fillets. Freshness indicators were the same for the three species. Freeze-chilled fillets had the highest free fatty acid and peroxide values but the levels were low and did not influence sensory response. The effects of the four treatments on the colour and texture of the raw fillets were small in practical terms and typical shelf-lives in the chill phase of the freeze-chill process were 3 to 5 days. In Part 2, modified atmosphere packaging (MAP) was combined with freezechilling to further extend the shelf-life of raw whiting, mackerel and salmon fillets/portions. Typical shelf-lives in the chill phase for the freeze-chilled fillets were 5 (whiting and mackerel) and 7 (salmon) days. Good manufacturing practice coupled with HACCP and careful tempering (thawing) are essential for the successful freeze-chilling of raw fish fillets. Packs should be labelled ‘previously frozen’ for consumer information. It is concluded that freeze-chilling with MAP is a suitable technology for extending the shelf-life of raw fish fillets.
    • Freeze-chilling of ready-to-eat meal components

      Redmond, Grainne; Gormley, Ronan T.; Butler, Francis; Dempsey, Alan; Oxley, Eamon; Gerety, Ailis (Teagasc, 2004-03)
      Freeze-chilling of food consists of freezing and frozen storage followed by thawing and then retailing at chill storage temperatures. It offers logistic, transportation and storage advantages to food manufacturers. Freeze-chilling has particular application to ready-meals and their components. Mashed potato (three cultivars), steamed carrots, steamed green beans and beef lasagne were found suitable for freeze-chilling and their quality and sensory properties compared favourably with their frozen, chilled and fresh counterparts. Modified atmosphere packaging was combined with freeze-chilling but it had little impact on shelflife extension for the product range with the outcome similar to that for samples packed in air. Tests on the freeze-chilling of white sauces showed the importance of using freeze-thaw stable starches. Best-practice thawing procedures were established and the importance of stacking configurations for outer boxes (each with a number of lasagne ready-meals) was highlighted in the case of the commercial tempering unit. Trials on the re-freezing of freeze-chilled products indicated that re-freezing is an option provided the normal storage protocols for frozen and chilled foods are observed.
    • From Concept to Completion. A roadmap for Food Entrepreneurs

      Curtin, Aine; McCarthy, Paul; McDonagh, Ciara; O'Neill, Edward (Teagasc (Agriculture and Food Development Authority), Ireland, 2006)
    • Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice

      Lima Almeida, Francisca Diva; Gomes, Wesley Faria; Cavalcante, Rosane; Tiwari, Brijesh; Cullen, Patrick J.; Frias, Jesus; Bourke, Paula; Fernandes, Fabiano A.N.; Rodrigues, Sueli; National Council of Technological and Scientific Development (Elsevier, 2017-10-02)
      In this study, the effect of atmospheric pressure cold plasma and high-pressure processing on the prebiotic orange juice was evaluated. Orange juice containing 7 g/100 g of commercial fructooligosaccharides (FOS) was directly and indirectly exposed to a plasma discharge at 70 kV with processing times of 15, 30, 45 and 60 s. For high-pressure processing, the juice containing the same concentration of FOS was treated at 450 MPa for 5 min at 11.5 °C in an industrial equipment (Hyperbaric, model: 300). After the treatments, the fructooligosaccharides were qualified and quantified by thin layer chromatography. The organic acids and color analysis were also evaluated. The maximal overall fructooligosaccharides degradation was found after high-pressure processing. The total color difference was < 3.0 for high-pressure and plasma processing. citric and ascorbic acid (Vitamin C) showed increased content after plasma and high-pressure treatment. Thus, atmospheric pressure cold plasma and high-pressure processing can be used as non-thermal alternatives to process prebiotic orange juice.
    • Functional ingredients as fat replacers in cakes and pastries

      Dwyer, Elizabeth; Gallagher, Eimear (Teagasc, 2001-05)
      For specific health concerns, consumers want fat taken out of food without the flavour and texture being adversely affected. Novel ingredients were investigated for use in the formulation of reduced fat bakery products. Formulations were developed for reduced fat muffins, madeira cake and shortcrust pastry by replacing some of the fat in the recipes with combinations of novel ingredients. The aim was to achieve at least a 25% fat reduction in the products while maintaining quality, texture, taste and consumer acceptability. Focus groups were used to ascertain consumers’ preferences for the reduced fat bakery products to determine which, if any, recipes had greatest potential for further development.
    • The Fungal Frontier: A Comparative Analysis of Methods Used in the Study of the Human Gut Mycobiome

      Huseyin, Chloe E.; Cabrera Rubio, Raul; O'Sullivan, Orla; Cotter, Paul D; Scanlan, Pauline D. (Frontiers, 31/07/2017)
      The human gut is host to a diverse range of fungal species, collectively referred to as the gut “mycobiome”. The gut mycobiome is emerging as an area of considerable research interest due to the potential roles of these fungi in human health and disease. However, there is no consensus as to what the best or most suitable methodologies available are with respect to characterizing the human gut mycobiome. The aim of this study is to provide a comparative analysis of several previously published mycobiome-specific culture-dependent and -independent methodologies, including choice of culture media, incubation conditions (aerobic versus anaerobic), DNA extraction method, primer set and freezing of fecal samples to assess their relative merits and suitability for gut mycobiome analysis. There was no significant effect of media type or aeration on culture-dependent results. However, freezing was found to have a significant effect on fungal viability, with significantly lower fungal numbers recovered from frozen samples. DNA extraction method had a significant effect on DNA yield and quality. However, freezing and extraction method did not have any impact on either α or β diversity. There was also considerable variation in the ability of different fungal-specific primer sets to generate PCR products for subsequent sequence analysis. Through this investigation two DNA extraction methods and one primer set was identified which facilitated the analysis of the mycobiome for all samples in this study. Ultimately, a diverse range of fungal species were recovered using both approaches, with Candida and Saccharomyces identified as the most common fungal species recovered using culture-dependent and culture-independent methods, respectively. As has been apparent from ecological surveys of the bacterial fraction of the gut microbiota, the use of different methodologies can also impact on our understanding of gut mycobiome composition and therefore requires careful consideration. Future research into the gut mycobiome needs to adopt a common strategy to minimize potentially confounding effects of methodological choice and to facilitate comparative analysis of datasets.
    • Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium

      Henchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark; Tiwari, Brijesh; Department of Agriculture, Food and the Marine, Ireland; 11/F/043 (MDPI, 20/07/2017)
      A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure food security.
    • Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium

      Henchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark A.; Tiwari, Brijesh; Department of Agriculture, Food and the Marine, Ireland (MDPI, 20/07/2017)
      A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure food security
    • Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains

      Arboleya, Silvia; Bottacini, Francesca; O’Connell-Motherway, Mary; Ryan, C. A; Ross, R Paul; van Sinderen, Douwe; Stanton, Catherine; Science Foundation Ireland; Department of Agriculture, Food and the Marine, Ireland; SFI/12/RC/2273; et al. (Biomed Central, 08/01/2018)
      Background Bifidobacterium longum is a common member of the human gut microbiota and is frequently present at high numbers in the gut microbiota of humans throughout life, thus indicative of a close symbiotic host-microbe relationship. Different mechanisms may be responsible for the high competitiveness of this taxon in its human host to allow stable establishment in the complex and dynamic intestinal microbiota environment. The objective of this study was to assess the genetic and metabolic diversity in a set of 20 B. longum strains, most of which had previously been isolated from infants, by performing whole genome sequencing and comparative analysis, and to analyse their carbohydrate utilization abilities using a gene-trait matching approach. Results We analysed their pan-genome and their phylogenetic relatedness. All strains clustered in the B. longum ssp. longum phylogenetic subgroup, except for one individual strain which was found to cluster in the B. longum ssp. suis phylogenetic group. The examined strains exhibit genomic diversity, while they also varied in their sugar utilization profiles. This allowed us to perform a gene-trait matching exercise enabling the identification of five gene clusters involved in the utilization of xylo-oligosaccharides, arabinan, arabinoxylan, galactan and fucosyllactose, the latter of which is an abundant human milk oligosaccharide (HMO). Conclusions The results showed high diversity in terms of genes and predicted glycosyl-hydrolases, as well as the ability to metabolize a large range of sugars. Moreover, we corroborate the capability of B. longum ssp. longum to metabolise HMOs. Ultimately, their intraspecific genomic diversity and the ability to consume a wide assortment of carbohydrates, ranging from plant-derived carbohydrates to HMOs, may provide an explanation for the competitive advantage and persistence of B. longum in the human gut microbiome.
    • Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains

      Arboleya, Silvia; Bottacini, Francesca; O’Connell-Motherway, Mary; Ryan, C. A; Ross, R Paul; van Sinderen, Douwe; Stanton, Catherine; Science Foundation Ireland; Department of Agriculture, Food and the Marine, Ireland; SFI/12/RC/2273; et al. (Biomed Central, 08/01/2018)
      Background Bifidobacterium longum is a common member of the human gut microbiota and is frequently present at high numbers in the gut microbiota of humans throughout life, thus indicative of a close symbiotic host-microbe relationship. Different mechanisms may be responsible for the high competitiveness of this taxon in its human host to allow stable establishment in the complex and dynamic intestinal microbiota environment. The objective of this study was to assess the genetic and metabolic diversity in a set of 20 B. longum strains, most of which had previously been isolated from infants, by performing whole genome sequencing and comparative analysis, and to analyse their carbohydrate utilization abilities using a gene-trait matching approach. Results We analysed their pan-genome and their phylogenetic relatedness. All strains clustered in the B. longum ssp. longum phylogenetic subgroup, except for one individual strain which was found to cluster in the B. longum ssp. suis phylogenetic group. The examined strains exhibit genomic diversity, while they also varied in their sugar utilization profiles. This allowed us to perform a gene-trait matching exercise enabling the identification of five gene clusters involved in the utilization of xylo-oligosaccharides, arabinan, arabinoxylan, galactan and fucosyllactose, the latter of which is an abundant human milk oligosaccharide (HMO). Conclusions The results showed high diversity in terms of genes and predicted glycosyl-hydrolases, as well as the ability to metabolize a large range of sugars. Moreover, we corroborate the capability of B. longum ssp. longum to metabolise HMOs. Ultimately, their intraspecific genomic diversity and the ability to consume a wide assortment of carbohydrates, ranging from plant-derived carbohydrates to HMOs, may provide an explanation for the competitive advantage and persistence of B. longum in the human gut microbiome.