• Partitioning of starter bacteria and added exogenous enzyme activities between curd and whey during Cheddar cheese manufacture

      Doolan, I. A.; Nongonierma, A. B.; Kilcawley, Kieran N; Wilkinson, M.G.; Department of Agriculture, Food and the Marine, Ireland; 04/R&D/C/238 (Elsevier, 26/07/2013)
      Partitioning of starter bacteria and enzyme activities was investigated at different stages of Cheddar cheese manufacture using three exogenous commercial enzyme preparations added to milk or at salting. The enzyme preparations used were: Accelase AM317, Accelase AHC50, Accelerzyme CPG. Flow cytometric analysis indicated that AHC50 or AM317 consisted of permeabilised or dead cells and contained a range of enzyme activities. The CPG preparation contained only carboxypeptidase activity. Approximately 90% of starter bacteria cells partitioned with the curd at whey drainage. However, key enzyme activities partitioned with the bulk whey in the range of 22%–90%. An increased level of enzyme partitioning with the curd was observed for AHC50 which was added at salting, indicating that the mode of addition influenced partitioning. These findings suggest that further scope exists to optimise both bacterial and exogenous enzyme incorporation into cheese curd to accelerate ripening.
    • Phages of non-dairy lactococci: isolation and characterization of ΦL47, a phage infecting the grass isolate Lactococcus lactis ssp. cremoris DPC6860

      Cavanagh, Daniel; Guinane, Catriona M.; Neve, Horst; Coffey, Aidan; Ross, R Paul; Fitzgerald, Gerald F.; McAuliffe, Olivia; Irish Dairy Levy Research Trust; Teagasc Walsh Fellowship Programme (Frontiers, 13/01/2014)
      Lactococci isolated from non-dairy sources have been found to possess enhanced metabolic activity when compared to dairy strains. These capabilities may be harnessed through the use of these strains as starter or adjunct cultures to produce more diverse flavor profiles in cheese and other dairy products. To understand the interactions between these organisms and the phages that infect them, a number of phages were isolated against lactococcal strains of non-dairy origin. One such phage, ΦL47, was isolated from a sewage sample using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. Visualization of phage virions by transmission electron microscopy established that this phage belongs to the family Siphoviridae and possesses a long tail fiber, previously unseen in dairy lactococcal phages. Determination of the lytic spectrum revealed a broader than expected host range, with ΦL47 capable of infecting 4 industrial dairy strains, including ML8, HP and 310, and 3 additional non-dairy isolates. Whole genome sequencing of ΦL47 revealed a dsDNA genome of 128, 546 bp, making it the largest sequenced lactococcal phage to date. In total, 190 open reading frames (ORFs) were identified, and comparative analysis revealed that the predicted products of 117 of these ORFs shared greater than 50% amino acid identity with those of L. lactis phage Φ949, a phage isolated from cheese whey. Despite their different ecological niches, the genomic content and organization of ΦL47 and Φ949 are quite similar, with both containing 4 gene clusters oriented in different transcriptional directions. Other features that distinguish ΦL47 from Φ949 and other lactococcal phages, in addition to the presence of the tail fiber and the genome length, include a low GC content (32.5%) and a high number of predicted tRNA genes (8). Comparative genome analysis supports the conclusion that ΦL47 is a new member of the 949 lactococcal phage group which currently includes the dairy Φ949.
    • Physiological Gut Oxygenation Alters GLP‐1 Secretion from the Enteroendocrine Cell Line STC‐1

      Kondrashina, Alina; Papkovsky, Dmitri; Giblin, Linda; Enterprise Ireland; TC20130001 (Wiley, 29/09/2017)
      1 Scope Enteroendocrine cell lines are routinely assayed in simple buffers at ≈20% oxygen to screen foods for bioactives that boost satiety hormone levels. However, in vivo, enteroendocrine cells are exposed to different phases of food digestion and function at low oxygen concentration, ranging from 7.5% in the stomach to 0.5% in the colon–rectal junction. 2 Methods and results The objective of this study is to investigate the effect of physiologically relevant O2 concentrations of the gut on the production and secretion of the satiety hormone, glucagon‐like peptide 1 (GLP‐1), from the murine enteroendocrine cell line, secretin tumor cell line (STC‐1), in response to dairy macronutrients as they transit the gut. GLP‐1 exocytosis from STC‐1 cells is influenced by both oxygen concentration and by individual macronutrients. At low oxygen, STC‐1 cell viability is significantly improved for all macronutrient stimulations and cyclic adenosine monophosphate levels are dampened. GLP‐1 secretion from STC‐1 cells is influenced by both the phase of yogurt digestion and corresponding O2 concentration. Atmospheric oxygen at 4.5% combined with upper gastric digesta, which simulates ileum conditions, yields the highest GLP‐1 response. 3 Conclusion This demonstrates the importance of considering physiological oxygen levels and food digestion along gastrointestinal tract for reliable in vitro analysis of gut hormone secretion.
    • Pilot-scale Production of Hydrolysates with Altered Bio-functionalities based on Thermally-denatured Whey Protein Isolate

      O'Loughlin, Ian B.; Murray, Brian A.; FitzGerald, Richard J.; Brodkorb, Andre; Kelly, Philip M.; Enterprise Ireland; Teagasc Walsh Fellowship Programme; CC20080001 (Elsevier, 13/08/2013)
      Whey protein isolate (WPI) solutions (100 g L−1 protein) were subjected to a heat-treatment of 80 °C for 10 min. Unheated and heat-treated WPI solutions were hydrolysed with Corolase® PP at pilot-scale to either 5 or 10% degree of hydrolysis (DH). Hydrolysates were subsequently processed via cascade membrane fractionation using 0.14 μm, and 30, 10, 5 and 1 kDa cut-off membranes. The compositional and molecular mass distribution profiles of the substrate hydrolysates and membrane processed fractions were determined. Whole and fractionated hydrolysates were assayed for both angiotensin-I-converting enzyme (ACE) inhibitory activity and ferrous chelating capabilities. A strong positive correlation (P < 0.01) was established between the average molecular mass of the test samples and the concentration needed to chelate 50% of the iron (CC50) in solution. The lowest ACE inhibition concentration (IC50 = 0.23 g L−1 protein) was determined for the 1 kDa permeate of the heat-treated 10% DH hydrolysate
    • Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle

      Beecher, Christine; Daly, Mairead; Childs, Stuart; Berry, Donagh P.; Magee, David A; McCarthy, Tommie V; Giblin, Linda (Biomed Central, 05/11/2010)
      Background: Mastitis, an inflammation of the mammary gland, is a major source of economic loss on dairy farms. The aim of this study was to quantify the associations between two previously identified polymorphisms in the bovine toll-like receptor 2 (TLR2) and chemokine receptor 1 (CXCR1) genes and mammary health indictor traits in (a) 246 lactating dairy cow contemporaries representing five breeds from one research farm and (b) 848 Holstein-Friesian bulls that represent a large proportion of the Irish dairy germplasm. To expand the study, a further 14 polymorphisms in immune genes were included for association studies in the bull population. Results: TLR4-2021 associated (P < 0.05) with both milk protein and fat percentage in late lactation (P < 0.01) within the cow cohort. No association was observed between this polymorphism and either yield or composition of milk within the bull population. CXCR1-777 significantly associated (P < 0.05) with fat yield in the bull population and tended to associate (P < 0.1) with somatic cell score (SCS) in the cows genotyped. CD14-1908 A allele was found to associate with increased (P < 0.05) milk fat and protein yield and also tended to associate with increased (P < 0.1) milk yield. A SERPINA1 haplotype with superior genetic merit for milk protein yield and milk fat percentage (P < 0.05) was also identified. Conclusion: Of the sixteen polymorphisms in seven immune genes genotyped, just CXCR1-777 tended to associate with SCS, albeit only in the on-farm study. The lack of an association between the polymorphisms with SCS in the Holstein-Friesian data set would question the potential importance of these variants in selection for improved mastitis resistance in the Holstein-Friesian cow.
    • Potential of cultivar and crop management to affect phytochemical content in winter-grown sprouting broccoli (Brassica oleracea L. var. italica)

      Reilly, Kim; Valverde, Juan; Finn, Leo; Rai, Dilip K; Brunton, Nigel; Sorenson, Jens C; Sorenson, Hilmer; Gaffney, Michael; Department of Agriculture, Food and the Marine, Ireland; 06/NITAFRC6 (Wiley, 08/07/2013)
      BACKGROUND: Variety and crop management strategies affect the content of bioactive compounds (phenolics, flavonoids and glucosinolates) in green broccoli (calabrese) types, which are cultivated during summer and autumn in temperate European climates. Sprouting broccoli types are morphologically distinct and are grown over the winter season and harvested until early spring. Thus they show considerable potential for development as an import substitution crop for growers and consumers during the ‘hungry gap’ of early spring. The present study investigated the effect of variety and management practices on phytochemical content in a range of sprouting broccoli varieties. RESULTS: Yields were significantly higher in white sprouting broccoli varieties. Levels of phenolics and flavonoids were in the range 81.6-270.4 and 16.9–104.8 mg 100g -1 FW respectively depending on year and cultivar, and were highest in varieties TZ 5052, TZ 5055, Red Admiral and Improved White Sprouting. In-row spacing did not affect flavonoid content. Phenolic and flavonoid content generally increased with increasing floret maturity and levels were high in edible portions of the crop. Crop wastes (leaf and flower) contained 145.9-239.3 and 21.5–116.6 mg 100g -1 FW total phenolics and flavonoids respectively depending on cultivar, tissue and year. Climatic factors had a significant effect on phenolic and flavonoid content. Levels of total and some individual glucosinolates were higher in sprouting broccoli than in the green broccoli variety Ironman. CONCLUSION: Levels of total phenolics, flavonoids and glucosinolates are higher in sprouting than green broccoli types. Sprouting broccoli represents an excellent source of dietary bioactive compounds.
    • Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model

      Egan, Aine M.; Sweeney, Torres; Hayes, Maria; O'Doherty, JohnV.; Marine Institute; Department of Agriculture, Food and the Marine; MFFRI/07/01 (PLOS, 04/12/2015)
      The potential of natural products to prevent obesity have been investigated, with evidence to suggest that chitosan has anti-obesity effects. The current experiment investigated the anti-obesity potential of prawn shell derived chitosan on a range of variables relevant to obesity in a pig model. The two dietary treatment groups included in this 63 day study were: T1) basal diet and T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group (70 ± 0.90 kg). The parameter categories which were assessed included: performance, nutrient digestibility, serum leptin concentrations, nutrient transporter and digestive enzyme gene expression and gut microbial populations. Pigs offered chitosan had reduced feed intake and final body weight (P< 0.001), lower ileal digestibility of dry matter (DM), gross energy (GE) (P< 0.05) and reduced coefficient of apparent total tract digestibility (CATTD) of gross energy and nitrogen (P<0.05) when compared to the basal group. Fatty acid binding protein 2 (FABP2) gene expression was down-regulated in pigs offered chitosan (P = 0.05) relative to the basal diet. Serum leptin concentrations increased (P< 0.05) in animals offered the chitosan diet compared to pigs offered the basal diet. Fatness traits, back-fat depth (mm), fat content (kg), were significantly reduced while lean meat (%) was increased (P<0.05) in chitosan supplemented pigs. Pigs offered chitosan had decreased numbers of Firmicutes in the colon (P <0.05), and Lactobacillus spp. in both the caecum (P <0.05) and colon (P <0.001). Bifidobacteria populations were increased in the caecum of animals offered the chitosan diet (P <0.05). In conclusion, these findings suggest that prawn shell chitosan has potent anti-obesity/body weight control effects which are mediated through multiple biological systems in vivo.
    • Predicting beef carcass meat, fat and bone proportions from carcass conformation and fat scores or hindquarter dissection

      Conroy, S. B.; Drennan, Michael J; McGee, Mark; Keane, Michael G.; Kenny, David A.; Berry, Donagh P. (Cambridge University Press, 2009-10)
      Equations for predicting the meat, fat and bone proportions in beef carcasses using the European Union carcass classification scores for conformation and fatness, and hindquarter composition were developed and their accuracy was tested using data from 662 cattle. The animals included bulls, steers and heifers, and comprised of Holstein–Friesian, early- and late-maturing breeds x Holstein–Friesian, early-maturing X early-maturing, late-maturing X early-maturing and genotypes with 0.75 or greater late-maturing ancestry. Bulls, heifers and steers were slaughtered at 15, 20 and 24 months of age, respectively. The diet offered before slaughter includes grass silage only, grass or maize silage plus supplementary concentrates, or concentrates offered ad libitum plus 1 kg of roughage dry matter per head daily. Following the slaughter, carcasses were classified mechanically for conformation and fatness (scale 1 to 15), and the right side of each carcass was dissected into meat, fat and bone. Carcass conformation score ranged from 4.7 to 14.4, 5.4 to 10.9 and 2.0 to 12.0 for bulls, heifers and steers, respectively; the corresponding ranges for fat score were 2.7 to 11.5, 3.2 to 11.3 and 2.8 to 13.3. Prediction equations for carcass meat, fat and bone proportions were developed using multiple regression, with carcass conformation and fat score both included as continuous independent variables. In a separate series of analyses, the independent variable in the model was the proportion of the trait under investigation (meat, fat or bone) in the hindquarter. In both analyses, interactions between the independent variables and gender were tested. The predictive ability of the developed equations was assed using cross-validation on all 662 animals. Carcass classification scores accounted for 0.73, 0.67 and 0.71 of the total variation in carcass meat, fat and bone proportions, respectively, across all 662 animals. The corresponding values using hindquarter meat, fat and bone in the model were 0.93, 0.87 and 0.89, respectively. The bias of the prediction equations when applied across all animals was not different from zero, but bias did exist among some of the genotypes of animals present. In conclusion, carcass classification scores and hindquarter composition are accurate and efficient predictors of carcass meat, fat and bone proportions.
    • Predicting the eating quality of meat

      Mullen, Anne Maria; Murray, Brendan; Troy, Declan J.; European Union (Teagasc, 2000-12)
      A novel, water soluble protein fragment [1735Da] was isolated from beef striploin and characterised. As soluble components of the proteolytic system are easily extracted from muscle they may be suitable for routine factory analysis. This fragment originated from the important myofibrillar protein, troponin T and may serve as a tenderness indicator.
    • Prediction of cull cow carcass characteristics from live weight and body condition score measured pre slaughter

      Minchin, W.; Buckley, Frank; Kenny, David A.; Keane, Michael G.; Shalloo, Laurence; O'Donovan, Michael (Teagasc, Oak Park, Carlow, Ireland, 2009)
      A study was conducted to provide information on the degree of carcass finish of Irish cull cows and to investigate the usefulness of live animal measurements for the prediction beef breeds (albeit with a moderate R2 value compared to the carcass weight prediction) using objective, non-intrusive and easily measured live animal measurements, should be of benefit to farmers finishing cull cows in Ireland. of cull cow carcass characteristics. Live weight (LW) and body condition score (BCS) were recorded on cows entering an Irish commercial slaughter facility between September and November, 2005. Data pertaining to sire breed, age and carcass characteristics were collected and subsequently collated for each cow. For analysis, cows (n = 2163) were subdivided into three breed categories: dairy breed sired by Holstein/ Friesian (FR), sired by early-maturing beef breeds (EM) and sired by late-maturing beef breeds (LM). The proportion of cows slaughtered at the desired (TARGET) carcass standard (cold carcass weight ≥ 272 kg, carcass conformation class ≥ P+ and carcass fat class ≥ 3) was low (on average 0.30), but did differ (P < 0.001) between the dairy and beef breed categories (0.22, 0.47 and 0.53 for FR, EM and LM categories, respectively). Regression procedures were used to develop equations to predict cold carcass weight, carcass conformation score, carcass fat score and proportion in the TARGET category from LW and BCS. Equations predicting cold carcass weight had high R2 values for all breed categories (0.81, 0.85 and 0.79 for the FR, EM and LM, respectively). Equations predicting carcass fatness had moderate R2 values for the beef breed categories (0.65 and 0.59 for the EM and LM, respectively). Equations predicting carcass conformation and the TARGET category yielded lower R2 values. The successful prediction of carcass weight for all breed categories and of carcass fatness for the
    • Prediction of naturally-occurring, industrially-induced and total trans fatty acids in butter, dairy spreads and Cheddar cheese using vibrational spectroscopy and multivariate data analysis

      Zhao, Ming; Beattie, Renwick J.; Fearon, Anna M.; O'Donnell, Colm P.; Downey, Gerard; Department of Agriculture, Food and the Marine; Teagasc Walsh Fellowship Programme (Elsevier, 08/08/2015)
      This study investigated the use of vibrational spectroscopy [near infrared (NIR), Fourier-transform mid-infrared (FT-MIR), Raman] and multivariate data analysis for (1) quantifying total trans fatty acids (TT), and (2) separately predicting naturally-occurring (NT; i.e., C16:1 t9; C18:1 trans-n, n = 6 … 9, 10, 11; C18:2 trans) and industrially-induced trans fatty acids (IT = TT – NT) in Irish dairy products, i.e., butter (n = 60), Cheddar cheese (n = 44), and dairy spreads (n = 54). Partial least squares regression models for predicting NT, IT and TT in each type of dairy product were developed using FT-MIR, NIR and Raman spectral data. Models based on NIR, FT-MIR and Raman spectra were used for the prediction of NT and TT content in butter; best prediction performance achieved a coefficient of determination in validation (R2V) ∼ 0.91–0.95, root mean square error of prediction (RMSEP) ∼ 0.07–0.30 for NT; R2V ∼ 0.92–0.95, RMSEP ∼ 0.23–0.29 for TT.
    • Preliminary study on the use of near infrared hyperspectral imaging for quantitation and localisation of total glucosinolates in freeze-dried broccoli

      Hernandez-Hierro, Jose Miguel; Esquerre, Carlos; Valverde, Juan; Villacreces, Salvador; Reilly, Kim; Gaffney, Michael; Gonzalez-Miret, M. Lourdes; Heredia, Francisco J.; O'Donnell, Colm P.; Downey, Gerard; Spanish MICINN; Junta de Andalucia; JCI-2011-09201); AGL2011-30254-C02; AGR 6331. (Elsevier, 15/11/2013)
      The use of hyperspectral imaging to (a) quantify and (b) localise total glucosinolates in florets of a single broccoli species has been examined. Two different spectral regions (vis–NIR and NIR), a number of spectral pre-treatments and different mask development strategies were studied to develop the quantitative models. These models were then applied to freeze-dried slices of broccoli to identify regions within individual florets which were rich in glucosinolates. The procedure demonstrates potential for the quantitative screening and localisation of total glucosinolates in broccoli using the 950–1650 nm wavelength range. These compounds were mainly located in the external part of florets.
    • The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry

      Gopal, Nidhi; Hill, Colin; Ross, R Paul; Beresford, Tom; Fenelon, Mark A.; Cotter, Paul D.; Teagasc Walsh Fellowship Programme; Irish Dairy Levy Research Trust (Frontiers Media S. A., 21/12/2015)
      Milk produced in udder cells is sterile but due to its high nutrient content, it can be a good growth substrate for contaminating bacteria. The quality of milk is monitored via somatic cell counts and total bacterial counts, with prescribed regulatory limits to ensure quality and safety. Bacterial contaminants can cause disease, or spoilage of milk and its secondary products. Aerobic spore-forming bacteria, such as those from the genera Sporosarcina, Paenisporosarcina, Brevibacillus, Paenibacillus, Geobacillus and Bacillus, are a particular concern in this regard as they are able to survive industrial pasteurization and form biofilms within pipes and stainless steel equipment. These single or multiple-species biofilms become a reservoir of spoilage microorganisms and a cycle of contamination can be initiated. Indeed, previous studies have highlighted that these microorganisms are highly prevalent in dead ends, corners, cracks, crevices, gaskets, valves and the joints of stainless steel equipment used in the dairy manufacturing plants. Hence, adequate monitoring and control measures are essential to prevent spoilage and ensure consumer safety. Common controlling approaches include specific cleaning-in-place processes, chemical and biological biocides and other novel methods. In this review, we highlight the problems caused by these microorganisms, and discuss issues relating to their prevalence, monitoring thereof and control with respect to the dairy industry.
    • Pro-Inflammatory Flagellin Proteins of Prevalent Motile Commensal Bacteria Are Variably Abundant in the Intestinal Microbiome of Elderly Humans

      Neville, B. Anne; Sheridan, Paul O.; Harris, Hugh M. B.; Coughlan, Simone; Flint, Harry J.; Duncan, Sylvia H.; Jeffery, Ian B.; Claesson, Marcus J.; Ross, R Paul; Scott, Karen P.; O’Toole, Paul W.; Science Foundation Ireland; Department of Agriculture, Food and the Marine; Health Research Board; Scottish Government Rural and Environment Science and Analytical Service Division; Irish Research Council for Science, Engineering and Technology; 07/IN.1/B1780 (PLoS, 23/07/2013)
      Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute “cell motility” category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the β- and γ- proteobacteria. Many fliC genes were deduced to be under the control of σ28. The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13–4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (≤1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved metagenome assembly from short reads will be required to facilitate in silico analyses of complete complex biochemical pathways for low-abundance target species from shotgun metagenomes.
    • Process environment sampling can help to reduce the occurrence of Listeria monocytogenes in food processing facilities

      Dalmasso, Marion; Jordan, Kieran; European Union; 265877 (Teagasc (Agriculture and Food Development Authority), Ireland, 2013)
      The occurrence and persistence of Listeria monocytogenes strains in food processing environments pose a risk of cross-contamination to food. The control of these strains is thus essential to ensure food safety. In the present study, 205 samples were collected from a food processing facility between May 2012 to February 2013 and analysed for the presence of L. monocytogenes by the ISO11290 standard method. L. monocytogenes isolates were differentiated using pulsed field gel electrophoresis. Up to 55% of the samples were positive for L. monocytogenes until October 2012. Advice was given on the implementation of corrective actions regarding cleaning and disinfection procedures and workflows. This resulted in a decrease in the number of positive samples, reflecting the reduction of L. monocytogenes in the processing environment. Eight pulsotypes were found in the food processing facility environment, mainly on non-food contact surfaces. One type was identified as persistent as it was isolated on each sampling occasion and constituted more than 71% of the isolates collected. It was the only type found in the processing environment after the implementation of corrective actions. This work demonstrates that processing environment sampling plans are effective to assess hygiene and implement corrective actions. This contributes to prevention of contamination events and consequently to assuring the safety of the food product.
    • Producing food ingredients by extrusion cooking

      Byrne, Briege; O'Neill, Gary; Troy, Declan J.; Lyng, James G. (Teagasc, 2001-04)
      The objective of the project was to improve the quality and acceptability of convenience foods produced by extrusion cooking. A range of acceptable, quality ingredients and food products was produced by extrusion cooking. These products had acceptable textural properties and were received favourably in consumer pre-test studies. However, a trade and consumer market analysis suggests that it would be difficult to develop a market for extruded meat products.
    • Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid

      O'Shea, Eileen F.; Cotter, Paul D.; Stanton, Catherine; Ross, R Paul; Hill, Colin; Department of Agriculture, Food and the Marine, Ireland; Science Foundation Ireland; 04R & DC; 07/CE/B1368 (Elsevier Science B.V., 16/01/2012)
      The mechanisms by which intestinal bacteria achieve their associated health benefits can be complex and multifaceted. In this respect, the diverse microbial composition of the human gastrointestinal tract (GIT) provides an almost unlimited potential source of bioactive substances (pharmabiotics) which can directly or indirectly affect human health. Bacteriocins and fatty acids are just two examples of pharmabiotic substances which may contribute to probiotic functionality within the mammalian GIT. Bacteriocin production is believed to confer producing strains with a competitive advantage within complex microbial environments as a consequence of their associated antimicrobial activity. This has the potential to enable the establishment and prevalence of producing strains as well as directly inhibiting pathogens within the GIT. Consequently, these antimicrobial peptides and the associated intestinal producing strains may be exploited to beneficially influence microbial populations. Intestinal bacteria are also known to produce a diverse array of health-promoting fatty acids. Indeed, certain strains of intestinal bifidobacteria have been shown to produce conjugated linoleic acid (CLA), a fatty acid which has been associated with a variety of systemic health-promoting effects. Recently, the ability to modulate the fatty acid composition of the liver and adipose tissue of the host upon oral administration of CLA-producing bifidobacteria and lactobacilli was demonstrated in a murine model. Importantly, this implies a potential therapeutic role for probiotics in the treatment of certain metabolic and immunoinflammatory disorders. Such examples serve to highlight the potential contribution of pharmabiotic production to probiotic functionality in relation to human health maintenance.
    • Production of multiple bacteriocins from a single locus by gastrointestinal strains of Lactobacillus salivarius

      O'Shea, Eileen F.; O'Connor, Paula M.; Raftis, Emma J.; O'Toole, Paul W.; Stanton, Catherine; Cotter, Paul D.; Ross, R Paul; Hill, Colin; Department of Agriculture, Food and the Marine, Ireland; Science Foundation Ireland; 04R & DC; 07/CE/B1368 (American Society for Microbiology, 07/10/2011)
      Bacteriocins produced by Lactobacillus salivarius isolates derived from gastrointestinal origin have previously demonstrated efficacy for in vivo protection against Listeria monocytogenes infection. In this study, comparative genomic analysis was employed to investigate the intraspecies diversity of seven L. salivarius isolates of human and porcine intestinal origin, based on the genome of the well characterised bacteriocin-producing strain L. salivarius UCC118. This revealed a highly conserved megaplasmid-encoded gene cluster in these strains involved in the regulation and secretion of two-component class IIb bacteriocins. However, considerable intraspecific variation was observed in the structural genes encoding the bacteriocin peptides. These ranged from close relatives of abp118 such as salivaricin P, which differs by 2 amino acids, to completely novel bacteriocins such as salivaricin T, which is characterized in this study. Salivaricin T inhibits closely related lactobacilli and bears little homology to previously characterized salivaricins. Interestingly, the two peptides responsible for salivaricin T activity, SalTα and SalTβ, share considerable identity with the component peptides of thermophilin 13, a bacteriocin produced by Streptococcus thermophilus. Furthermore, the salivaricin locus of strain DPC6488 also encodes an additional novel one-component class IId anti-listerial bacteriocin, salivaricin L. These findings suggest a high level of redundancy in the bacteriocins that can be produced by intestinal L. salivarius isolates using the same enzymatic production and export machinery. Such diversity may contribute to their ability to dominate and compete within the complex microbiota of the mammalian gut.
    • Production of pork with improved nutritional and eating quality

      O'Keeffe, Michael; Eskola, Mart; Nugent, Audrey; Fitzpatrick, Jane; European Union (Teagasc, 2007-06)
      The SUSPORKQUAL project – sustainability in the production of pork with improved nutritional and eating quality using strategic feeding in outdoor production – was designed to address issues relating to pig performance, environmental effects, meat quality, meat safety, animal welfare, nutritional quality of products, and marketability of pork from sustainable outdoor pig production systems. The project handled these issues through seven workpackages involving 11 research groups from seven European countries.
    • The Proportion of Fermented Milk in Dehydrated Fermented Milk–Parboiled Wheat Composites Significantly Affects Their Composition, Pasting Behaviour, and Flow Properties on Reconstitution

      Shevade, Ashwini V.; O’Callaghan, Yvonne C.; O’Brien, Nora M.; O’Connor, Tom P.; Guinee, Timothy P.; Department of Agriculture, Food and the Marine; 14/F/805 (MDPI, 2018-07-14)
      Dairy and cereal are frequently combined to create composite foods with enhanced nutritional benefits. Dehydrated fermented milk–wheat composites (FMWC) were prepared by blending fermented milk (FM) and parboiled wheat (W), incubating at 35 °C for 24 h, drying at 46 °C for 48 h, and milling to 1 mm. Increasing the weight ratio of FM to W from 1.5 to 4.0 resulted in reductions in total solids (from 96 to 92%) and starch (from 52 to 39%), and increases in protein (15.2–18.9%), fat (3.7–5.9%), lactose (6.4–11.4%), and lactic acid (2.7–4.2%). FMWC need to be reconstituted prior to consumption. The water-holding capacity, pasting viscosity, and setback viscosity of the reconstituted FMWC (16.7% total solids) decreased with the ratio of FM to W. The reconstituted FMWC exhibited pseudoplastic flow behaviour on shearing from 18 to 120 s−1. Increasing the FM:W ratio coincided with a lower yield stress, consistency index, and viscosity at 120 s−1. The results demonstrate the critical impact of the FM:W ratio on the composition, pasting behavior, and consistency of the reconstituted FMWC. The difference in consistency associated with varying the FM:W ratio is likely to impact on satiety and nutrient value of the FMWCs.